JWRR  >> Vol. 3 No. 2 (April 2014)

    湘江流域SWAT模型建立及参数敏感性分析
    The Application of SWAT to Simulate the Runoff in the Xiangjiang Basin and the Parameter Sensitivity Analysis

  • 全文下载: PDF(1736KB) HTML    PP.85-94   DOI: 10.12677/JWRR.2014.32014  
  • 下载量: 2,583  浏览量: 7,872  

作者:  

侯雨坤,陈 华,许崇育:水资源与水电工程科学国家重点实验室,武汉大学,武汉;水利水电学院,武汉大学,武汉;
黄 逍:水利水电学院,武汉大学,武汉

关键词:
SWAT模型湘江数据库日径流SUFI-2Swat Model Xiangjiang Basin Database Daily Runoff SUFI-2

摘要:

本文以湘江流域为研究区域,构建SWAT模型数字高程、土壤、土地利用及水文气象数据库,利用该流域1991~2005年日雨量和日径流资料,对湘江流域的涟水、渌水、洣水、衡阳以上以及衡阳到湘潭区间5个区域进行参数敏感性分析及率定。研究表明,在SWAT模型的参数中,alpha基流因子、河道曼宁系数等参数在以径流效率系数为优化目标的参数率定过程中具有较强敏感性;在检验期2001~2005年,湘江干流衡阳站和湘潭站的径流效率系数Ens均达到0.7以上,3个支流站径流效率系数也超过0.6,且水量平衡系数RE绝对值均控制在10%以内,说明湘江流域SWAT模型日径流模拟效果良好

A distributed SWAT model was introduced and applied in Xiangjiang basin. To construct the database of SWAT, those data, including DEM, land use, soil and hydro-meteorology have been collected, transformed and analyzed. The sensitive analysis of parameters, as well as their calibration and validation, was carried out in five sub-basins, by using the daily rainfall and runoff data from 1991 to 2005. The result shows that among these parameters, the alpha coefficient and Manning coefficient have high sensitivity in the five regions when the Nash-Sutcliffe efficiency coefficient (Ens) was the objective function. During the validation period from 2001 to 2005, the Nash-Sut- cliffe efficiency coefficients of five sub-basins in Xiangjiang basin are all over 0.6, and the coefficients of water balance in five sub-basins are all within 10%, which shows that SWAT model has a good performance in simulating daily runoff in Xiangjiang basin.

文章引用:
侯雨坤, 黄逍, 陈华, 许崇育. 湘江流域SWAT模型建立及参数敏感性分析[J]. 水资源研究, 2014, 3(2): 85-94. http://dx.doi.org/10.12677/JWRR.2014.32014

参考文献

[1] 夏智宏, 周月华, 许红梅. 基于SWAT模型的汉江流域水资源对气候变化的响应[J]. 长江流域资源与环境, 2010, 19(2): 158-163. XIA Zhihong, ZHOU Yuehua and XU Hongmei. Water resources responses to climate changes in Hanjiang river basin based on SWAT model. Resources and environment in the Yangtze basin, 2010, 19(2): 158-163. (in Chinese)
[2] 陈利群, 刘昌明. 黄河源区气候和土地覆被变化对径流的影响[J]. 中国环境科学, 2007, 27(4): 559-565. CHEN Liqun, LIU Changming. Influence of climate and land-cover change on runoff of the source regions of Yellow River. China Environmental Science, 2007, 27(4): 559-565. (in Chinese)
[3] 欧春平, 夏军, 王中根, 等. 土地利用/覆被变化对SWAT模型水循环模拟结果的影响研究——以海河流域为例[J]. 水力发电学报, 2009, 28(4): 124-129. OU Chunping, XIA Jun, WANG Zhonggen, et al. LUCC influence on SWAT hydrological simulation—A case study of Haihe river basin. Journal of Hydroelectric Engineering, 2009, 28(4): 124-129. (in Chinese)
[4] Arnold, J.G., Neitsch, S.L., Kiniry, J.R., et al. Soil and water assessment tool. Theoretical Documentation, Version 2009, Agriculture Research Service US, 2009.
[5] 庞靖鹏. 非点源污染分布式模拟[D]. 北京师范大学, 2007. PANG Jinpeng. Distributed nonpoint source pollution modeling—A case study on water source areas protection in the Miyun reservoir. Beijing Normal University, 2007. (in Chinese)
[6] KRYSANOVA, V., MULLER-WOHLFEIL, D. I. and BECKER, A. Integrated modelling of hydrology and water quality in mesoscale watersheds. PIK Report, 1996.
[7] SOPHOCLEOUS, M. A., KOELLIKER, J. K., GOVINDARAJU, R. S., et al. Integrated numerical model-ing for basinwide water management: The case of the Rattlesnake Creek basin in south-central Kansas. Journal of Hy-drology, 1999, 214(1-4): 179-196.
[8] ECKHARDT, K., HAVERKAMP, S., FOHRER, N., et al. SWAT-G, a version of SWAT99.2 modified for application to low mountain range catchments. Physics and Chemistry of the Earth, 2002, 27(9-10): 641-644.
[9] VAN GRIENSVEN, A., BAUWENS, W. Integral water quality modelling of catchments. Water Science and Technology, 2001, 43(7): 321-328.