番茄穴盘苗组织钾阈值的初步研究
Preliminary Study on K Threshold in Tissues of Tomato Plug Seedlings
DOI: 10.12677/HJAS.2014.42005, PDF, HTML,  被引量 下载: 2,656  浏览: 9,503  国家自然科学基金支持
作者: 梁 欢, 尚庆茂:中国农业科学院蔬菜花卉研究所,北京
关键词: 番茄穴盘苗组织阈值Tomato; Plug Seedlings; Tissues; K; Threshold
摘要: 为明确番茄穴盘苗组织钾阈值,采用四苯硼钠比浊法测定了番茄17个主栽品种不同组织钾含量,并选其中两个品种(佳红4号和中杂105)研究了氮、磷、钾盈亏供应和外界环境因素对番茄穴盘苗组织钾含量的影响。发现17个品种中,仙客5号组织间钾含量的变化范围最大,为2.92~6.72 g/L;供试品种的10个取样组织中,第2叶位叶柄品种间钾含量的变化范围最大,为3.23~4.93 g/L。与正常对照相比,钾盈余供应下番茄穴盘苗组织钾含量最大提高了1.23倍,钾亏缺供应下钾含量最大减小了64.84%。番茄穴盘苗组织钾含量也会因氮供应水平、磷供应水平、温度、光照等外部因素的改变而变化,最大增加了38.34%,最大减小了36.01%。以番茄17个品种不同组织钾含量范围为基础阈值,利用环境条件作用最大增幅和最大减幅进行校正,获得番茄穴盘苗组织钾含量阈值,即下胚轴4.63~6.94 g/L,茎5.56~7.40 g/L,第1叶位叶柄2.65~4.62 g/L,第1叶位叶片2.14~4.09 g/L,第2叶位叶柄2.80~6.93 g/L,第2叶位叶片2.54~5.17 g/L,第3叶位叶柄3.55~7.06 g/L,第3叶位叶片2.69~6.24 g/L,第4叶位叶柄4.29~7.71 g/L,第4叶位叶片3.90~7.07 g/L
Abstract: To obtain the K threshold in tissues of tomato plug seedlings, K contents were measured in different tissues of 17 tomato cultivars by turbidimetric method with sodium tetraphenylborate. The effects of N, P, K fertilization level and environmental factors on K contents were also examined in two representative cultivars (Jiahong No.4and Zhongza No.105). The results showed that K contents varied among different cultivars and tissues with significant difference. The K threshold of the second leaf petiole among different tissues was maximal and 3.23 - 4.93 g/L, and the K threshold of Xianke No.5 among different tissues was maximal and 2.92 - 6.72 g/L. In addition, the K contents of tomato plug seedlings increased as the K fertilization levels increased from 29 to 1875 mg/L. Compared to that in the seedlings supplied with normal K, the K content was increased by at most 1.23-fold in the seedlings supplied with excessive K, while in the seedlings fertilized with low level of K, the K content was reduced at most 64.84%. With the change of external factors such as N or P fertilization level, or temperature, or light intensity, the K contents in tissues of tomato plug seedlings also changed. And the K contents were increased at most 38.34% and decreased at most 36.01%. Therefore, the basic values of K contents from 17 cultivars were corrected with these environmental factors. Finally the K threshold in tissues of tomato plug seedlings was 4.63 - 6.94 g/L in hypocotyls, 5.56 - 7.40 g/L in stems, 2.65 - 4.62 g/L in first leaf petioles, 2.14 - 4.09 g/L in first leaves, 2.80 - 6.93 g/L in second leaf petioles, 2.54 - 5.17 g/L in second leaves, 3.55 - 7.06 g/L in third leaf petioles, 2.69 - 6.24 g/L in third leaves, 4.29 - 7.71 g/L in fourth leaf petioles, 3.90 - 7.07 g/L in fourth leaves.
文章引用:梁欢, 尚庆茂. 番茄穴盘苗组织钾阈值的初步研究[J]. 农业科学, 2014, 4(2): 19-27. http://dx.doi.org/10.12677/HJAS.2014.42005

参考文献

[1] 张恩平, 张淑红, 李天来, 葛晓光 (2005) 蔬菜钾素营养的研究现状与展望. 中国农学通报, 8, 265-268.
[2] Zhao, D., Oosterhuis, D.M. and Bednarz, C.W. (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica, 39, 103-109.
[3] Jordan-Meille, L. and Pellerin, S. (2008) Shoot and root growth of hydroponic maize (Zea mays L.) as influenced by K deficiency. Plant and Soil, 304, 157-168.
[4] Pettigrew, W.T. (2008) Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiologia Plantarum, 133, 670-681.
[5] Cakmak, I. (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. Journal of Plant Nutrition and Soil Science, 168, 521-530.
[6] Prado, R.M. and Caione, G. (2012) Plant analysis. Soil Fertility, 115-134.
[7] Hartz, T.K., Smith, R.F., LeStrange, M. and Schulbach, K.F. (1993) On-farm monitoring of soil and crop nitrogen status by nitrate-selective electrode. Communications in Soil Science & Plant Analysis, 24, 2607-2615.
[8] 聂万林, 姜益娟, 杨明花, 郑德明 (2010) 杂交棉品种杂4钾素营养诊断指标的研究. 中国棉花, 4, 17-20.
[9] Handson, P.D. and Shelley, B.C. (1993) A review of plant analysis in Australia. Australian Journal of Experimental Agriculture, 33, 1029-1038.
[10] Hochmuth, G. (1994) Efficiency ranges for nitrate-nitrogen and potassium for vegetable petiole sap quick tests. HortTechnology, 4, 218-222.
[11] Tubino, M. and Torres, J.R.O. (1992) Turbidimetric determination of potassium in leaf tissues with sodium tetraphenylboron. Communications in Soil Science & Plant Analysis, 23, 123-128.
[12] 涂书新, 孙锦荷, 郭智芬 (1999) 富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究. 核农学报, 5, 305-311.
[13] 彭克勤, 胡笃敬 (1986) 空心莲子草K+吸收的动力学研究. 植物生理学报, 2, 187-193.
[14] George, M.S., Lu, G. and Zhou, W. (2002) Genotypic variation for potassium uptake and utilization efficiency in sweet potato. Field Crops Research, 77, 7-15.
[15] 李见云, 王宜伦, 介晓磊, 谭金芳, 李有田, 化党领, 韩燕来 (2002) 不同小麦品种钾素积累差异及其对钾肥施用的产量效应. 河南农业大学学报, 2, 125-128.
[16] Beusichem, M.L.V., Kirkby, E.A. and Baas, R. (1988) Influence of nitrate and ammonium nutrition on the uptake, assimilation, and distribution of nutrients in Ricinus communis. Plant Physiology, 86, 914-921.
[17] 黄建国, 杨邦俊, 袁玲 (1995) 小麦不同品种吸收钾离子的动力学研究. 植物营养与肥料学报, 1, 38-43.
[18] 谢少平 (1989) 高等植物钾离子吸收的调节. 植物生理学通讯, 4, 1-7.
[19] 谢少平, 倪晋山 (1990) 水稻(威优49)幼苗根系 K+(86Rb+)吸收的调节. 植物生理学报, 1, 63-69.
[20] Xu, J., Li, H.D., Chen, L.Q., Wang, Y., Liu, L.L., He, L. and Wu, W.H. (2006) A protein kinase, interacting with two calcineurin b-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell, 125, 1347-1360.
[21] Shin, R. and Schachtman, D.P. (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. Proceedings of the National Academy of Sciences of the United States of America, 101, 8827-8832.
[22] 孙小茗, 封克, 汪晓丽 (2007) K+高亲和转运系统吸收动力学特征及其受NH4+影响的研究. 植物营养与肥料学报, 12, 208-212.
[23] Aini, N. and Tang, C. (1998) Diagnosis of potassium deficiency in faba bean and chickpea by plant analysis. Australian Journal of Experimental Agriculture, 38, 503-509.
[24] Hochmuth, G., Maynard, D., Vavrina, C., Hanlon, E. and Simonne, E. (1991) Plant tissue analysis and interpretation for vegetable crops in Florida. Florida Cooperative Extension Service SS-VEC-42.