NAT  >> Vol. 4 No. 2 (May 2014)

    一种用于微小型铷原子频标的6.83 GHz谐振腔
    A 6.83GHz Microwave Cavity for Miniaturized Rubidium Atomic Frequency Standard

  • 全文下载: PDF(989KB) HTML    PP.31-38   DOI: 10.12677/NAT.2014.42006  
  • 下载量: 2,255  浏览量: 7,900   科研立项经费支持

作者:  

魏秀燕,吴 静,夏 瑞,郭 航:厦门大学,物理与机电工程学院,萨本栋微米纳米科学技术研究院,厦门

关键词:
铷气室型原子频标微小型化微机电系统(MEMS)填充介质谐振腔谐振频率Rubidium Atom Frequency Standard Miniaturized MEMS Microwave Cavity with Filled Dielectrics Resonance Frequency

摘要:

研制了一种用于微小型铷原子频标的6.83 GHz微波谐振腔。对谐振腔内的电磁场、谐振频率与探针的关系进行了分析,并应用Ansoft HFSS软件进行填充介质的谐振腔进行了仿真分析。在此基础上对介质谐振腔进行设计与加工制造,测量出填充不同厚度的氧化铝陶瓷时谐振腔的谐振频率。结果表明,当矩形谐振腔取12 mm × 15 mm × 18 mm,填充5.66 mm厚的氧化铝陶瓷介质,介质谐振腔频率可达6.83 GHz,模式为TE101,谐振腔体积大幅减小至3.24 cm3, 是传统的未填充谐振腔体积的三分之一,同时电磁场分布均匀,适用于铷气室型微小型原子频标。

This paper presents a 6.83 GHz microwave cavity for miniaturized rubidium atomic frequency standard. Electromagnetic fields in the microwave cavity are analyzed, and relationships of the resonance frequency and the size of the field excitation probe are studied. The Ansoft HFSS software is used to simulate the electromagnetic distributions in microwave cavity. Based on these analyses, the microwave cavity is manufactured. By using the vector network analyzer, the S11 parameters for the micro- wave cavity filled with different thickness of aluminum oxide ceramics are acquired. Tested results demonstrate that the electromagnetic field mode is TE101 when the resonance frequency reaches 6.83 GHz, and cavity size is 12 mm × 15 mm × 18 mm with the thickness of filled aluminum oxide ceramics (96%) of 5.66 mm. The volume of the developed 6.83 GHz microwave cavity is 3.24 cm3, which is about 1/3 of the volume of the conventional unfilled cavity. It fits very well for loading the MEMS- based rubidium filter cell and absorption cell for miniaturized rubidium atomic frequency standards.

This paper presents a 6.83 GHz microwave cavity for miniaturized rubidium atomic frequency standard. Electromagnetic fields in the microwave cavity are analyzed, and relationships of the resonance frequency and the size of the field excitation probe are studied. The Ansoft HFSS software is used to simulate the electromagnetic distributions in microwave cavity. Based on these analyses, the microwave cavity is manufactured. By using the vector network analyzer, the S11 parameters for the micro- wave cavity filled with different thickness of aluminum oxide ceramics are acquired. Tested results demonstrate that the electromagnetic field mode is TE101 when the resonance frequency reaches 6.83 GHz, and cavity size is 12 mm × 15 mm × 18 mm with the thickness of filled aluminum oxide ceramics (96%) of 5.66 mm. The volume of the developed 6.83 GHz microwave cavity is 3.24 cm3, which is about 1/3 of the volume of the conventional unfilled cavity. It fits very well for loading the MEMS- based rubidium filter cell and absorption cell for miniaturized rubidium atomic frequency standards.

文章引用:
魏秀燕, 吴静, 夏瑞, 郭航. 一种用于微小型铷原子频标的6.83 GHz谐振腔[J]. 纳米技术, 2014, 4(2): 31-38. http://dx.doi.org/10.12677/NAT.2014.42006

参考文献

[1] 王义遒, 王吉庆, 傅济时, 等 (1986) 量子频率原理. 科学出版社, 北京.
[2] Vanier, J. and Audoin, C. (1989) The quantum physics of atomic frequency standards. Adam Hilger, Brristol and Philadaphia.
[3] Knappe, S., Liew, L., shah, V. and Schwindt, P. (2004) A Microfabricated Atomic Clock. Applied Physics Letters, 85, 1460.
[4] Lutwak, R., Rashed, A., Serkland, D.K. (2004) The Miniature Atomic Clock-Pre-Production Results. Proceedings of the 2004 IEEE Frequency Control Symposium, 2007 Joint with the 21st European Frequency and Time Forum, 13271333.
[5] Lee, C.-H., Guo, H., et al. (2004) A batch fabricated rubidium-vapor resonance cell for chip-scale atomic clock. Proceedings of the Solid-state Sensor, Actuator and Microsystems, Hilton Head Island, 23-36.
[6] 郭航, 王盛贵 (2009) 用于微小型化铷原子钟的MEMS Rb-85滤光泡的研究. 传感技术学报, 22, 659-663.
[7] Wang, S.G., Lin, L.W. and Guo, H. (2009) Analysis and design of a micromachined Rb-85 filter in passive rubidium atomic clock. 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 911-914.
[8] Xia, B.H., Zhong, D., An, S.F. and Mei, G.H. (2006) Characteristics of a novel kind of miniaturized cavity-cell assembly for rubidium frequency standards. IEEE Transactions on Instrumentation and Measurement, 55, 1000-1005.
[9] 涂建辉, 翟浩, 彭正琴, 等 (2009) 一种小型化铷原子频标TE111微波腔研究. 宇航技测技术, 29, 9-11.
[10] Chantry, P.J., Weineert, R.W., Tallisa, S.H., et al. (1991) US Miniaturized Atomic Frequency Standard, 5192921.
[11] Violetti, M., Affolderbach, C. and Merli, F. (2012) Miniaturized microwave cavity for rubidium atomic frequency standards. Proceedings of the 42nd European Microwave Conference, 1320-1323.
[12] 林智鑫, 王盛贵, 刘琦, 等(2013) 带有Si3N4薄膜玻璃–硅–玻璃三层结构的阳极键合. 传感器与微系统, 32, L63-67.
[13] 王婷婷, 曾毅波, 王盛贵, 魏秀燕, 毕瑞可, 郭航 (2014) 用于承载铷原子钟滤光泡的高品质微腔体的制备. 传感器与微系统 (Unpublished)
[14] Pozar, D.M. (2011) Microwave Engineering. 4th Edition, John Wiley & Sons, Inc., New York.
[15] 谢拥军, 梁昌洪 (1996) 探针耦合谐振腔的谐振频率分析. 西安电子科技大学学报, 23, 263-265.
[16] 尹衍生, 张景德 (2001) 氧化铝陶瓷及其复合材料. 化学工业出版社, 北京.