冶金工程  >> Vol. 1 No. 1 (March 2014)

鲕状赤铁矿高温快速还原试验研究
Study on Dephosphorization Behavior for Oolitic Hematite by High Temperature Reduction

DOI: 10.12677/meng.2014.11004, PDF, HTML, 下载: 2,216  浏览: 7,555  国家科技经费支持

作者: 朱德庆, 李静华, 潘 建, 李晓波, 吴腾蛟:中南大学资源加工与生物工程学院,长沙

关键词: 鲕状赤铁矿高温快速还原碱度脱磷率添加剂Oolitic Hematite; High Temperature and Short Time Reduction; Basicity; Dephosphorization Rate; Additives

摘要: 采用内配碳球团高温快速还原-磁选工艺处理国内某高磷鲕状赤铁矿,系统研究了C/Fe比、还原温度、还原时间、二元碱度、添加剂配比对还原过程中金属化率、脱磷及磁选等指标的影响,并对其提铁脱磷行为进行探讨。研究表明,在适宜的条件下还原-磁选,可获得铁品位94.06%、铁回收率91.37%的铁精矿,总脱磷率由自然碱度、无添加剂条件下的35.49%提高到91.79%,铁精矿的磷含量由2.03%降低到0.25%。部分磷被还原成气态挥发,大部分磷被还原后与金属铁结合,磁选难以脱除;提高碱度,形成高熔点物质可抑制一部分磷与铁反应,加入钠盐添加剂可提高精矿铁品位并抑制磷灰石的还原。
Abstract: Based on the characteristics of high phosphorus oolitic hematite, the studies were done by short time reduction at high temperature and magnetic separation for carbon-bearing pellets. The effects of C/Fe ratio, reduction temperature, reduction time, binary basicity, and additives on the concentrate indexes on metallization ratio and dephosphorization behavior were studied. The results show that the iron concentrate, assaying 94.06% Fe and 0.25% P with iron recovery of 91.37% and dephosphorization of 91.89%, was conducted under the optimum conditions. The iron concentrate, assaying 2.03% P with dephosphorization of 35.49%%, was conducted under natural basicity and no additives. During the reduction roasting, some phosphorus was volatilized in the form of P gas. For the pellets without adding additives, most phosphorus formed phosphorus iron compounds with metallic iron, which was difficult to remove. When the additives were employed and the basicity was increased, most phosphorus was absorbed in the high melting substances, and removed by magnetic separation.

文章引用: 朱德庆, 李静华, 潘建, 李晓波, 吴腾蛟. 鲕状赤铁矿高温快速还原试验研究[J]. 冶金工程, 2014, 1(1): 20-27. http://dx.doi.org/10.12677/meng.2014.11004

参考文献

[1] U.S. Geological Survey (2012) Mineral commodity summaries 2012. U.S. Geological Survey, Reston.
[2] 刘淑贤, 申丽丽, 牛福生 (2012) 微细粒嵌布难选鲕状赤铁矿现状研究及展望. 中国矿业, 1, 70-77.
[3] 刘杰, 周明顺, 翟立委, 等 (2011) 中国复杂难选铁矿的研究现状. 中国矿业, 5, 63-66.
[4] 李成秀, 文书明 (2004) 浅谈铁矿降磷的现状. 国外金属矿选矿, 8, 4-7.
[5] 刘思冬, 张金柱, 徐红艳 (2012) 贵州赫章赤铁矿浮选试验. 现代矿业, 5, 12-13.
[6] 鲍光明, 龚文琪, 胡纯, 等 (2010) 鄂西鲕状赤铁矿赤铁矿微生物脱磷研究. 金属矿山, 3, 40-42.
[7] 刘淑贤, 申丽丽, 牛福生 (2012) 某贫鲕状赤铁矿深度还原试验研究. 中国矿业, 3, 78-80.
[8] 魏寿昆 (1980) 冶金热力学. 上海科学技术出版社, 上海.
[9] 周继程, 薛正良, 张海峰, 等 (2007) 高磷鲕状赤铁矿脱磷技术研究. 炼铁, 4, 40-43.
[10] 雷婷 (2012) 高磷鲕状赤铁矿中磷矿物的还原焙烧行为及铁磷分离技术. 中南大学, 长沙.