AIRR  >> Vol. 3 No. 2 (May 2014)

    基于活跃目标点粒子群算法的SVM参数选取
    Parameters Selection of SVM Based on Extended APSO Algorithm

  • 全文下载: PDF(367KB) HTML    PP.19-24   DOI: 10.12677/AIRR.2014.32004  
  • 下载量: 2,076  浏览量: 7,572  

作者:  

李景南,任开春,余佳玲,陈福光,吴钊铭:重庆通信学院,重庆

关键词:
支持向量机活跃目标点粒子群算法参数选取Support Vector Machines Active Target Particle Swarm Optimization Parameter Selection

摘要:

支持向量机是最近才兴起的一种分类工具,它广泛用于控制领域,但是其预测精度受到了其参数选取的影响。使用活跃目标点改进粒子群优化算法,利用活跃目标点粒子群算法搜索支持向量机的最优参数组合。对比仿真实验表明:活跃目标点粒子群算法可以正确支持向量机的参数,能够进行较为准确的分类。

Support Vector Machine (SVM), a new mathematic modeling tool, has been widely used in many industry applications. The good generalization ability and estimation accuracy are impacted by parameters selection of SVM. Particle Swarm Optimization is improved by using active target. The active target particle swarm optimization was proposed to search the optimal combination of SVM parameters. Simulations show that active target particle swarm optimization is an effective way to search the SVM parameters and has good performance in classification.

文章引用:
李景南, 任开春, 余佳玲, 陈福光, 吴钊铭. 基于活跃目标点粒子群算法的SVM参数选取[J]. 人工智能与机器人研究, 2014, 3(2): 19-24. http://dx.doi.org/10.12677/AIRR.2014.32004

参考文献

[1] Cortes, C. and Vapnik, V. (1995) Support-vector networks. Machine Learning, 20, 273-297.
[2] 张学工 (2000) 关于统计学习理论与支持向量机. 自动化学报, 1, 32-42.
[3] Vapnik, V. (2000) 统计学习理论的本质. 张学工, 译. 清华大学出版社, 北京.
[4] Burges, C.J.C. (1998) A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 2, 121-167.
[5] Zhang, Y.N., Hu, Q.N. and Teng, H.F. (2008) Active target particle swam optimization. Concurrency and Computation: practice and Experience, 20, 29-40.
[6] Kennedy, J. and Eberhart, R.C. (1995) Partiele swarm optimization. IEEE International Conference on Neural Networks, 27 November-1 December 1995, 1942-1948.
[7] 张英男 (2008) 改进的粒子群优化算法(APSO和DPSO)研究. 大连理工大学, 大连.
[8] 曹龙汉, 曹长修 (2002) 基于粗糙集理论的柴油机神经网络故障诊断研究. 内燃机学报, 4, 357-361.