长春花生物碱代谢生物学研究进展
The Catharanthus Terpenoid Indole Alkaloids: Metabolic Biology Review
DOI: 10.12677/BR.2014.33012, PDF, HTML, 下载: 3,237  浏览: 12,549  国家科技经费支持
作者: 成海宁, 唐中华:东北林业大学森林植物生态学教育部重点实验室,哈尔滨
关键词: 长春花生物碱代谢生物学调控因子生物合成Catharanthus roseus Alkaloid Metabolic Biology Regulatory Factor Biosynthesis
摘要: 随着长春碱和长春新碱日益成为近年来抗癌药物研发的重要对象,长春花生物碱受到了广泛的关注,与其相关的研究也随之得到了较快的发展。生物碱代谢生物学是在各门学科的基础上应运而生的一门跨领域的新兴交叉学科,它研究的是生物碱在代谢途径中的代谢生物学过程及其功能。本文从长春花生物碱的代谢途径、代谢控制因子,以及长春花生物碱的合成和贮存部位等方面,对长春花生物碱代谢生物学作以简要综述,对长春花生物碱的生物学功能的研究提出了展望。
Abstract: The alkaloids in Catharanthus roseus are noticed extensively as vinblastine and vincristine have been the important anticancer drugs recently, and the concerned studies developed rapidly. On the basis of many disciplines, metabolic biology of alkaloid is a new interdiscipline which contains many fields, and what it studied is the biosynthetic process of the alkaloids in the biosynthetic pathway. This paper attempts to give a brief review on the metabolic biology of the alkaloids in Catharanthus roseus, involving the biosynthetic pathway, regulatory factors, and biosynthesis and storage position of the alkaloids in C. roseus, and the perspective of researches on biological function also has been given.
文章引用:成海宁, 唐中华. 长春花生物碱代谢生物学研究进展[J]. 植物学研究, 2014, 3(3): 77-83. http://dx.doi.org/10.12677/BR.2014.33012

参考文献

[1] Dutta, A., Batra, J., Pandey-Rai, S., Singh, D., Kumar, S. and Sen, J. (2005) Expression of terpenoid indole alkaloid biosynthetic pathway genes corresponds to accumulation of related alkaloids in Catharanthus roseus (L.) G. Don, Planta, 220, 376-383.
[2] Glenn, W.S., Runguphan, W. and O’Connor, S.E. (2012) Recent progress in the metabolic engineering of alkaloids in plant systems. Current Opinion in Biotechnology, 24, 354-365.
[3] Yang, C.Q., Fang, X., Wu, X.M., Mao, Y.B., Wang, L.J. and Chen, X.Y. (2012) Transcriptional regulation of plant secondary metabolism. Journal of Integrative Plant Biology, 54, 703-712.
[4] Asano, M., Harada, K., Yoshikawa, T., Bamba, T. and Hirata, K. (2010) Synthesis of anti-tumor dimeric indole alkaloids in catharanthus roseus was promoted by irradiation with near-ultraviolet light at low temperature. Bioscience, Biotechnology, and Biochemistry, 74, 386-389.
[5] Zhou, M.L., Shao, J.R. and Tang, Y.X. (2009) Production and metabolic engineering of terpenoid indole alkaloids in cell cultures of the medicinal plant Catharanthus roseus (L.) G. Don (Madagascar periwinkle). Biotechnology and Applied Biochemistry, 52, 313-323.
[6] St-Pierre, B., Vazquez-Flota, F.A. and De Luca, V. (1999) Multicellular compartmentation of catharanthus roseus alkaloid biosynthesis predicts intercellular translocation of a pathway intermediate. Plant Cell, 11, 887-900.
[7] Scragg, A.H. (1999) Alkaloid accumulation in Catharanthus roseus suspension cultures. Methods in Molecular Biology, 111, 393-402.
[8] Rischer, H., Oresic, M., Seppanen-Laakso, T., Katajamaa, M., Lammertyn, F., Ardiles-Diaz, W., Van Montagu, M.C., Inze, D., Oksman-Caldentey, K.M. and Goossens, A. (2006) Gene-to-metabolite networks for terpenoid indole alkaloid biosynthesis in Catharanthus roseus cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 5614-5619.
[9] de Waal, A., Meijer, A.H. and Verpoorte, R. (1995) Strictosidine synthase from Catharanthus roseus: Purification and characterization of multiple forms. Biochemical Journal, 306, 571-580.
[10] Kumar, S., Jaggi, M., Taneja, J. and Sinha, A.K. (2011) Cloning and characterization of two new Class III peroxidase genes from Catharanthus roseus. Plant Physiology and Biochemistry, 49, 404-412.
[11] Jaggi, M., Kumar, S. and Sinha, A.K. (2011) Overexpression of an apoplastic peroxidase gene CrPrx in transgenic hairy root lines of Catharanthus roseus. Applied Microbiology and Biotechnology, 90, 1005-1016.
[12] Sottomayor, M., Lopez-Serrano, M., DiCosmo, F. and Ros Barcelo, A. (1998) Purification and characterization of alpha-3’,4’-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Letters, 428, 299-303.
[13] Sottomayor, M., Duarte, P., Figueiredo, R. and Ros Barcelo, A. (2008) A vacuolar class III peroxidase and the metabolism of anticancer indole alkaloids in Catharanthus roseus: Can peroxidases, secondary metabolites and arabinogalactan proteins be partners in microcompartmentation of cellular reactions? Plant Signaling & Behavior, 3, 899-901.
[14] Costa, M.M., Hilliou, F., Duarte, P., Pereira, L.G., Almeida, I., Leech, M., Memelink, J., Barcelo, A.R. and Sottomayor, M. (2008) Molecular cloning and characterization of a vacuolar class III peroxidase involved in the metabolism of anticancer alkaloids in Catharanthus roseus. Plant Physiology, 146, 403-417.
[15] Kumar, S., Dutta, A., Sinha, A.K. and Sen, J. (2007) Cloning, characterization and localization of a novel basic peroxidase gene from Catharanthus roseus. FEBS Letters, 274, 1290-1303.
[16] Shukla, A.K., Shasany, A.K., Verma, R.K., Gupta, M.M., Mathur, A.K. and Khanuja, S.P. (2010) Influence of cellular differentiation and elicitation on intermediate and late steps of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. Protoplasma, 242, 35-47.
[17] Oudin, A., Mahroug, S., Courdavault, V., Hervouet, N., Zelwer, C., Rodriguez-Concepcion, M., St-Pierre, B. and Burlat, V. (2007) Spatial distribution and hormonal regulation of gene products from methyl erythritol phosphate and monoterpene-secoiridoid pathways in Catharanthus roseus. Plant Molecular Biology, 65, 13-30.
[18] Vazquez-Flota, F., De Luca, V., Carrillo-Pech, M., Canto-Flick, A. and de Lourdes Miranda-Ham, M. (2002) Vindoline biosynthesis is transcriptionally blocked in Catharanthus roseus cell suspension cultures. Molecular Biotechnology, 22, 1-8.
[19] Murata, J. and De Luca, V. (2005) Localization of tabersonine 16-hydroxylase and 16-oh tabersonine-16-o-methyltransferase to leaf epidermal cells defines them as a major site of precursor biosynthesis in the vindoline pathway in Catharanthus roseus. Plant Jouenal, 44, 581-594.
[20] Hernandez-Dominguez, E., Campos-Tamayo, F. and Vazquez-Flota, F. (2004) Vindoline synthesis in in vitro shoot cultures of Catharanthus roseus. Biotechnology Letters, 26, 671-674.
[21] Makhzoum, A., Petit-Paly, G., St Pierre, B. and Bernards, M.A. (2011) Functional analysis of the dat gene promoter using transient Catharanthus roseus and stable Nicotiana tabacum transformation systems. Plant Cell Reports, 30, 1173-1182.
[22] Guirimand, G., Guihur, A., Poutrain, P., Hericourt, F., Mahroug, S., St-Pierre, B., Burlat, V. and Courdavault, V. (2011) Spatial organization of the vindoline biosynthetic pathway in Catharanthus roseus. Journal of Plant Physiology, 168, 549-557.
[23] Wang, Q., Yuan, F., Pan, Q., Li, M., Wang, G., Zhao, J. and Tang, K. (2010) Isolation and functional analysis of the Catharanthus roseus deacetylvindoline-4-o-acetyltransferase gene promoter. Plant Cell Reports, 29, 185-192.
[24] Murata, J., Roepke, J., Gordon, H. and De Luca, V. (2008) The leaf epidermome of Catharanthus roseus reveals its biochemical specialization. Plant Cell, 20, 524-542.
[25] Kaltenbach, M., Schroder, G., Schmelzer, E., Lutz, V. and Schroder, J. (1999) Flavonoid hydroxylase from Catharanthus roseus: cDNA, Heterologous expression, enzyme properties and cell-type specific expression in plants. Plant Journal, 19, 183-193.
[26] Mishra, S., Triptahi, V., Singh, S., Phukan, U.J., Gupta, M.M., Shanker, K. and Shukla, R.K. (2013) Wound Induced tanscriptional regulation of benzylisoquinoline pathway and characterization of wound inducible PsWRKY Transcription factor from Papaver somniferum. PLoS ONE, 8, Article ID: e52784.
[27] De Geyter, N., Gholami, A., Goormachtig, S. and Goossens, A. (2012) Transcriptional Machineries in jasmonate-elicited plant secondary metabolism. Trends in Plant Science, 17, 349-359.
[28] Vazquez-Flota, F.A. and De Luca, V. (1998) Jasmonate Modulates developmentand light-regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemistry, 49, 395-402.
[29] Endt, D.V., Silva, M.S.E., Kijne, J.W., Pasquali, G. and Memelink, J. (2007) Identification of a Bipartite jasmonateresponsive promoter element in the Catharanthus roseus ORCA3 Transcription factor gene that interacts specifically with AT-hook DNA-binding proteins. Plant Physiology, 144, 1680-1689.
[30] Idrees, M., Naeem, M., Aftab, T., Khan, M.M. and Moinuddin, (2013) Salicylic acid restrains nickel toxicity, improves antioxidant defence system and enhances the production of anticancer alkaloids in Catharanthus roseus (L.). Journal of Hazardous Materials, 252-253, 367-374.
[31] Vazquez-Flota, F.A. and De Luca, V. (1998) Developmental and Light regulation of desacetoxyvindoline 4-hydroxylase in Catharanthus roseus (L.) G. Don. . Evidence of a multilevel regulatory mechanism. Plant Physiology, 117, 1351-1361.
[32] Vazquez-Flota, F.A., St-Pierre, B. and De Luca, V. (2000) Light Activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseus seedlings. Phytochemistry, 55, 531-536.
[33] Amini, A., Glevarec, G., Andreu, F., Rideau, M. and Creche, J. (2009) Low Levels of gibberellic acid control the biosynthesis of ajmalicine in Catharanthus roseus cell suspension cultures. Planta Medica, 75, 187-191.
[34] Limam, F., Chahed, K., Ouelhazi, N., Ghrir, R. and Ouelhazi, L. (1998) Ouelhazi, phytohormone regulation of isoperoxidases in Catharanthus roseus Suspension cultures. Phytochemistry, 49, 1219-1225.