病毒诱导基因沉默(VIGS)在禾本科植物中的研究进展
Progress of Virus Induced Gene Silence (VIGS) System in the Studies of Gramineae Plant
DOI: 10.12677/BR.2014.33014, PDF, HTML, 下载: 4,043  浏览: 17,139  科研立项经费支持
作者: 田焕焕, 覃瑞, 刘虹, 李刚:中南民族大学生命科学学院,南方少数民族地区生物资源保护与综合利用工程中心,武汉;刘清云:湖北浠水县农业局,黄冈
关键词: 病毒诱导基因沉默(VIGS)VIGS载体沉默效率禾本科Virus-Induced Gene Silencing VIGS Vector Silence Efficiency Gramineae
摘要: 病毒诱导基因沉默(virus-induced gene silencing, VIGS)是近几年新发展起来的一种反向遗传学技术。它是通过将含有目的基因的重组病毒载体导入到宿主植物中,抑制植物内源基因表达,使其表现出目标基因功能丧失或表达水平下降的表型,属于转录后基因沉默(post-transcriptional gene silencing, PTGS)。与传统的技术相比,VIGS技术具有操作简便、无需构建转基因植株、能快速获得沉默表型等明显优点,现已被广泛应用于植物功能基因组学的研究。本文对VIGS的作用机制、操作过程、影响沉默效率的因素、应用领域各个方面进行阐述,其中会对禾本科植物中的可用载体、研究进展、前景展望进行重点介绍。
Abstract: Virus-induced gene silencing (VIGS) is a new kind of reverse genetic technique which has developed in recent years. By transferring the recombinant virus vector containing the target gene into host plants to inhibit the expression of endogenous genes of plants, VIGS makes host plants show different phenotypes, such as loss of function or decline in the gene expression of the target gene. VIGS has the obvious advantages over the traditional technology: easy operation, without constructing the transgenic plants, quickly obtaining the phenotype of gene silencing and so on. It has been used in studying functional genomics of plant widely nowadays. This article makes a description of the mechanisms of VIGS, the process of operation, the factors that influence efficiency of silencing, and the application field of VIGS; then, this article will focus on available vectors, progresses and prospects of Gramineous.
文章引用:田焕焕, 覃瑞, 刘虹, 刘清云, 李刚. 病毒诱导基因沉默(VIGS)在禾本科植物中的研究进展 [J]. 植物学研究, 2014, 3(3): 91-104. http://dx.doi.org/10.12677/BR.2014.33014

参考文献

[1] Baulcombe, D. (1999) Viruses and gene silencing in plants. Archives of Virology, 15, 189-201.
[2] Napoli, C., Lemieux, C. and Jorgensen, R. (1990) Introduction of a chemeric chalcone synthase gene into petunia results in reversible cosuppression of homologous genes in trans. The Plant Cell, 2, 279-289.
[3] Romano, N. and Macino, G. (1992) Quelling: Transient inactivation of gene expression in Neurospora crassa by transformation with homologous sequences. Molecular microbiology, 6, 3343-3353.
[4] Kumagai, M.H., Donson, J., Della-Cioppa, G., et al. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proceedings of the National Academy of Sciences of the USA, 92, 1679-1683.
[5] Ding, S.W. and Voinnet, O. (2007) Antiviral immunity directed by small RNAs. Cell, 130, 413-426.
[6] Waterhouse, P.M. and Fusaro, A.F. (2006) Viruses face a double defense by plant small RNAs. Plant Science, 313, 54-55.
[7] Hammond, S.M., Bernstein, E., Beach, D., et al. (2000) An RNA-directed nuclease mediates post transcriptional gene silencing in Drosophila cells. Nature, 404, 293-296.
[8] Kalantidis, K.S.H., Alexiadis, T. and Helm, J.M. (2008) RNA silencing movement in plants. Biological Cell, 100, 1326.
[9] Purkayastha, A. and Dasgupta, I. (2009) Virus induced gene silencing: A versatile tool for discovery of gene functions in plants. Plant Physiology Biochemistry, 47, 967-976.
[10] Robertson, D. (2004) VIGS vector for gene silencing: Many targets many tools. Annual Review of Plant Biology, 55, 495-519.
[11] Cakir, C., Gillespie, M.E. and Scofield, S.R. (2010) Rapid determination of gene function by virus-induced gene silencing in wheat and barley. Crop Science, 50, 77-84.
[12] Holzberg, S., Brosio, P., Gross, C., et al. (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal, 30, 315-327.
[13] Pacak, A., Strozycki, P.M., Barciszewska-Pacak, M., et al. (2010) The Brome mosaic virus-based recombination vector triggers a limited gene silencing response depending on the orientation of the inserted sequence. Archives of Virology, 155, 169-179.
[14] Ruiz, M.T., Voinnet, O. and Baulcombe, D.C. (1998) Initiation and maintenance of virus induced gene silencing. The Plant Cell, 10, 937-946.
[15] Noueiry, A.O. and Ahlquist, P. (2003) Brome mosaic virus RNA replication: revealing the role of the host in RNA virus replication. Annual Review of Phytopathology, 41, 77-98.
[16] Rao, A.L.N. (2006) Genome packaging by spherical plant RNA viruses. Annual Review of Phytopathology, 44, 61-87.
[17] Peele, C., Jordml, C.V., Muangsan, N., Turnage, M., Egelkrout, E., et al. (2001) Silencing of a meristematic gene using geminivirus-derived vectors. The Plant Journal, 27, 357-366.
[18] Turnage, M.A., Muangsan, N., Peele, C.G. and Robertson, D. (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. The Plant Journal, 30, 107-114.
[19] Kjemtrup, S., Sampson, K.S., Peele, C.G., Nguyen, L.V., Conkling, M.A., et al. (2009) Gene silencing from plant DNA carried by a Geminivirus. The Plant Journal, 14, 91-100.
[20] Becker, A. (2013) Methods and protocols: Virus-induced gene silencing. Plant Evodevo Group, Justus-Liebig-Universität Gießen, Germany.
[21] Tao, X.R. and Zhou, X.P. (2004) A modified viral satellite DNA that suppresses gene expression in plants. The Plant Journal, 38, 850-860.
[22] Purkayastha, A., Mathur, S., Verma,V., Sharma, S. and Dasgupta, I. (2010) Virus-induced gene silencing in rice using a vector derived from a DNA virus. Planta, 232, 1531-1540.
[23] Gutierrez, C. (2002) Strategies for geminivirus DNA replication and cell cycle interference. Physiological and Molecular Plant Pathology, 60, 219-230.
[24] Gosselé, V., Faché, I., Meulewaeter, F., Cornelissen, M. and Metzlaff, M. (2002) SVISS—A novel transient gene silencing system for gene function discovery and validation in tobacco plants. The Plant Journal, 32, 859-866.
[25] Xu, Y.P., Zheng, L.P., Xu, Q.F., Wang, C.C., Zhou, X.P., et al. (2007) Efficiency for gene silencing induction in Nicotiana species by a viral satellite DNA vector. Journal of Integrative Plant Biology, 49, 1726-1733.
[26] 张召军, 王晓彬, 王慧, 等 (2014) 中国番茄黄化曲叶病毒利用根吸收法诱导基因沉默(VIGS)的初步研究. 生物技术通报, 1, 143-146.
[27] 张凌娣, 王朝辉, 王献兵, 等 (2005) 两种植物病毒编码蛋白的基因沉默抑制子功能鉴定. 科学通报, 3, 219-224.
[28] Brigneti, G., Voinnet, O., Li, W.X., Ji, L.H., Ding, S.W., et al. (1998) Viral pathogenicity determinants are suppressors of transgene silencing in Nicotiana benthamiana. The EMBO Journal, 17, 6739-6746.
[29] Mallory, A.C., Ely, L., Smith, T.H., Marathea, R., Anandalakshmi, R., et al. (2001) HC-pro suppression of transgene silencing eliminates the small RNAs but not transgene methylation or the mobile signal. The Plant Cell, 13, 571-583.
[30] Voinnet, O., Lederer, C. and Baulcombe, D.C. (2000) A viral movement protein preventes spread of the gene silencing signal in Nicotiana benthamiana. Cell, 103, 157-167.
[31] Thomas, C.L., Jones, L., Baulcombe, D.C. and Maule, A.J. (2001) Size constraints for targeting post-transcriptional gene silencing and for RNA-directed methylation in Nicotiara benathamiana using a potato virus X vector. The Plant Journal, 25, 417-425.
[32] Burch-Smith, T.M., Anderson, J.C., Dinesh-Kumar, S.P. and Martin, G.B. (2004) Applicntions and advantages of virus-induced silencing for gene function studies in plants. The Plant Journal, 39, 734-746.
[33] Lu, R., Martin-Hernandez, A.M., Peart, J.R., Malcuit, I. and Baulcombe, D.C. (2003) Virus-induced gene silencing in plants. Methods, 30, 296-303.
[34] Pacak, A., Geisler, K., Jørgensen, B., Barciszewska-Pacak, M., Nilsson, L., et al. (2010) Investigations of barley stripe mosaic virus as a gene silencing vector in barley roots and in Brachypodium distachyon and oat. Plant Methods, 6, 26.
[35] Bruun-Rasmussen, M., Madsen, C.T., Jessing, S. and Albrechtsen, M. (2007) Stability of Barley stripe mosaic virusinduced gene silencing in barley. Molecular Plant-Microbe Interactions, 20, 1323-1331.
[36] Meng, Y., Moscou, M.J. and Wise, R.P. (2009) Blufensin1 negatively impacts basal defense in response to barley powdery mildew. Plant Physiology, 149, 271-285.
[37] Campbell, J. and Li, H. (2010) Silencing of multiple genes in wheat using barley stripe mosaic virus. Journal of Biotech Research, 2, 12-20.
[38] Tai, Y.S., Bragg, J. and Edwards, M.C. (2005) Virus vector for gene silencing in wheat. BioTechniques, 39, 310-312.
[39] Ding, X.S., Schneider, W.L., Chaluvadi, S.R., Mian, M.A. and Nelson, R.S. (2006) Characterization of a Brome mosaic virus strain and its use as a vector for gene silencing in monocotyledonous hosts. Molecular Plant-Microbe Interactions, 19, 1229-1239.
[40] Ding, X.S., Ballard, K., Nelson, R.S. (2009) Improving virus-induced gene silencing (VIGS) in rice through Agrobacterium in filtration. Proceedings of the 14th International Congress on Molecular Plant-Microbe Interactions, Quebec City, 19-23 July 2009, 7.
[41] Alejska, M., Figlerowicz, M., Malinowska, N., Urbanowicz, A. and Figlerowicz, M. (2005) A universal BMV-based RNA recombination system—How to search for general rules in RNA recombination. Nucleic Acids Research, 33, e105-e105.
[42] Ding, X.S., Rao, C.S. and Nelson, R.S. (2007) Analysis of gene function in rice through virus-induced gene silencing. Methods in Molecular Biology, 354, 145-160.
[43] Hay, J.M., Jones, M.C., Blakebrough, M.L., Dasgupta, I., Davies, J.W., et al. (1991) An analysis of an infectious clone of rice tungro bacilliform virus, a plant pararetrovirus. Nucleic Acids Research, 19, 2615-2621.
[44] Fu, D.Q., Zhu, B.Z., Zhu, H.L., Jiang, W.B. and Luo, Y.B. (2005) Virus-induced gene silencing in tomato fruit. The Plant Journal, 43, 299-308.
[45] Ratcliff, F., Martin-Hernandez, A.M., Baulcombe, D.C. (2001) Tobacco rattle virus as a vector for analysis of gene function by silencing. The Plant Journal, 25, 237-245.
[46] Ryu, C.M., Anand, A., Kang, L. and Mysore, K.S. (2004) Agrodrench: A novel and effective agroinoculation method for virus-induced gene silencing in roots and diverse Solanaceous species. The Plant Journal, 40, 322-331.
[47] Ekengren, S.K., Liu, Y.L., Schiff, M., Dinesh-Kumar, S.P. and Martin, G.B. (2003) Two MAPK cascades, NPR1, and TGA transcription factors play a role in Pto-mediated disease resisitance in tomato. The Plant Journal, 36, 905-917.
[48] Watson, J.M., Fusaro, A.F., Wang, M. and Waterhouse, P.M. (2005) RNA silencing platforms in plants. FEBS Letters, 579, 5982-5987.
[49] Fofana, I.B.F, Sangaré, A., Collier, R., Taylor, C. and Fauquet, C.M. (2004) A geminivirus-induced gene silencing system for gene function validation in cassava. Plant Molecular Biology, 56, 613-624.
[50] Cakir, C. and Tör, M. (2010) Factors influencing Barley stripe mosaic virus-mediated gene silencing in wheat. Physiological and Molecular Plant Pathology, 74, 246-253.
[51] Szittya, G., Silhavy, D., Molnár, A., Havelda, Z., Lovas, Á., et al. (2003) Low temperature inhibits RNA silencing-mediated defence by the control of siRNA generation. The EMBO Journal, 22, 633-640.
[52] Rotenberg, D., Thompson, T.S., German, T.L. and Willis, D.K. (2006) Methods for effective real-time RT-PCR analysis of virus-induced gene silencing. Journal of Virological Methods, 138, 49-59.
[53] Tufan, H.A., Stefanato, F.L., McGrann, G.R., MacCormack, R. and Boyd, L.A. (2011) The Barley stripe mosaic virus system used for virus-induced gene silencing in cereals differentially affects susceptibility to fungal pathogens in wheat. Plant Physiology, 168, 990-994.
[54] Lacomme, C., Hrubikova, K. and Hein, I. (2003) Enhancement of virus-induced gene silencing through viral-based production of inverted-repeats. The Plant Journal, 34, 543-553.
[55] Senthil-Kumar, M. and Mysore, K.S. (2011) Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotechnol Journal, 9, 797-806.
[56] Sztuba-Solińska, J., Dzianott, A. and Bujarski, J.J. (2011) Recombination of 5’ subgenomic RNA3a with genomic RNA3 of Brome mosaic bromovirus in Vitro and in Vivo. Virology, 410, 129-141.
[57] Wroblewski, T., Tomczak, A. and Michelmore, R. (2005) Optimization of Agrobacterium-mediated transient assays of gene expression in lettuce, tomato and Arabidopsis. Plant Biotechnol Journal, 3, 259-273.
[58] Liu, Y., Burch-Smith, T., Schiff, M., Feng S. and Dinesh-Kumar, S.P. (2004) Molecular chaperone Hsp90 associates with resistance protein N and its signaling proteins SGT1 and Rar1 to modulate an innate immune response in plants. Journal of Biological Chemistry, 79, 2101-2108.
[59] Dong, Y., Burch-Smith, T.M., Liu, Y., Mamillapalli, P. and Dinesh-Kumar, S.P. (2007) A ligation-independent cloning tobacco rattle virus vector for high-throughput virus-induced gene silencing identifies roles for NbMADS4-1 and -2 in floral development. Plant Physiology, 145, 1161-1170.
[60] Senthil-Kumar, M., Govind, G., Kang, L., Mysore, K.S. and Udayakumar, M. (2007) Functional characterization of Nicotiana benthamiana homologs of peanut water deficit-induced genes by virus-induced gene silencing. Planta, 225, 523-539.
[61] 崔艳红, 贾芝琪, 李颖, 等. (2009) 利用 VIGS 研究马铃薯晚疫病抗性基R3a和RB的信号传导. 园艺学报, 7, 997-1004.
[62] Benkovics, A.H., Nyikó, T., Mérai, Z., Silhavy, D. and Bisztray, G.D. (2011) Functional analysis of the grapevine paralogs of the SMG7 NMD factor using a heterolog VIGS-based gene depletion-complementation system. Plant Molecular Biology, 75, 277-290.
[63] Scofield, S.R., Amanda, L.H., Brandt, S. and Gill, B.S. (2005) Development of a virus-induced gene silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiology, 138, 2165-2173.
[64] Loutre, C., Wicker, T., Travella, S., Galli, P., Scofield, S., et al. (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant Journal, 60, 1043-1054.
[65] Zhou, H.B., Li, S.F., Deng, Z.Y., Wang, X., Chen, T., et al. (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. The Plant Journal, 52, 420-434.
[66] Cao, A.H., Xing, L.P., Wang, X.Y., Yang, X., Wang, W., et al. (2011) Serine/threonine kinase gene Stpk-V, a key member of powdery mildew resistance gene Pm21, confers powdery mildew resistance in wheat, confers powdery mildew resistance in wheat. Proceedings of the National Academy of Sciences of the United States of America, 108, 7727-7732.
[67] Wang, G.F., Wei, X., Fan, R., Zhou, H., Wang, X., et al. (2011) Molecular analysis of common wheat genes encoding three types of cytosolic heat shock protein 90 (Hsp90): functional involvement of cytosolic Hsp90s in the control of wheat seedling growth and disease resistance. New Phytologist, 191, 418-431.
[68] Hein, I., Pacak, M.B., Hrubikova, K., Williamson, S., Dinesen, M., et al. (2005) Virus-induced gene silencing-based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiology, 138, 21552164.
[69] Shen, Q.H., Saijo, Y., Mauch, S., Biskup, C., Bieri, S., et al. (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 315, 1098-1103.
[70] Zhang, L., Lavery, L., Gill, U., Gill, K., Steffenson, B., et al. (2009) A cation/proton-exchanging protein is a candidate for the barley NecS1 gene controlling necrosis and enhanced defense response to stem rust. Theoretical and Applied Genetics, 118, 385-397.
[71] Van Eck, L., Schultz, T., Leach, J.E., Scofield, S.R., Peairs, F.B., et al. (2010) Virus-induced gene silencing of WRKY53 and an inducible phenylalanine ammonia-lyase in wheat reduces aphid resistance. Plant Biotechnology Journal, 8, 1023-1032.
[72] Oikawa, A., Rahman, A., Yamashita, T., Taira, H. and Kidou, S. (2007) Virus-induced gene silencing of P23k in barley leaf reveals morphological changes involved in secondary wall formation. Journal of Experimental Botany, 58, 2617-2625.
[73] Held, M.A., Penning, B., Brandt, A.S., Kessansa, S.A., Yong, W., et al. (2008) Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proceedings of the National Academy of Sciences of the United States of America, 105, 20534-20539.
[74] Van der Linde, K., Kastner, C., Kumlehn, J., Kahmann, R. and Doehlemann, G. (2011) Systemic virus-induced gene silencing allows functional characterization of maize genes during biotrophic interaction with Ustilago maydis. New Phytologist, 189, 471-483.
[75] Shi,Y., Qin, Y., Cao, Y., Sun, H., Zhou, T., et al. (2011) Influence of an m-type thioredoxin in maize on potyviral infection. European Journal of Plant Pathology, 131, 317-326.
[76] Niblett, C.L. and Paulsen, A.Q. (1975) Purification and further characterization of Panicum Mosaic Virus. Phytopathology, 65, 1157-1160.
[77] Tatineni, S., McMechan, A.J., Hein, G.L. and French, R. (2011) Efficient and stable expression of GFP through Wheat streak mosaic virus-based vectors in cereal hosts using a range of cleavage sites: formation of dense fluorescent aggregates for sensitive virus tracking. Virology, 410, 268-281.
[78] Stratmann, J.W. and Hind, S.R. (2011) Gene silencing goes viral and uncovers the private life of plants. Entomologia Experimentalis et Applicata, 140, 91-102.
[79] Wu, J., Hettenhausen, C., Meldau, S. and Baldwin, I.T. (2007) Herbivory rapidly activates MAPK signaling in attacked and unattacked leaf regions but not between leaves of Nicotiana attenuata. Plant Cell, 19, 1096-1122.
[80] Zheng, S.J., Snoeren, T.A.L., Hogewoning, S.W., van Loon, J.J.A. and Dicke, M. (2010) Disruption of plant carotenoid biosynthesis through virus-induced gene silencing affects oviposition behaviour of the butterfly Pieris rapae. New Phytologist, 186, 733-745.