IJPN  >> Vol. 2 No. 4 (November 2013)

    Gamma神经振荡的病理生理意义
    The Pathophysiological Significance of the Gamma Frequency Band Neural Oscillation

  • 全文下载: PDF(248KB) HTML    PP.21-25   DOI: 10.12677/IJPN.2013.24006  
  • 下载量: 2,569  浏览量: 10,903  

作者:  

周永霞:新乡医学院, 新乡;
侯丽君:新乡医学院第三附属医院,新乡;
姜洪波:新乡医学院, 新乡;新乡医学院第三附属医院,新乡

关键词:
Gamma振荡海马抑制性中间神经元网络精神疾病Gamma Band Oscillation; Hippocampus; Inhibitory Interneuron Network; Mental Disease

摘要:

海马的Gamma神经振荡是频率范围在30~100 Hz内的一种脑内神经元同步化活动,抑制性中间神经元组成的神经网络是产生此高频节律性活动的主要发生器。已有研究表明,Gamma神经振荡不仅有着复杂的生理机能,而且与多种精神疾病过程有关。本文较为详细地阐述了脑电Gamma振荡产生的机制、生理和病理生理意义等。

 Gamma oscillation in the hippocampus ranges from 30 to 100 Hz. Inhibitory interneuron network is considered as the main generator which generates the gamma oscillation. Existing studies have shown that gamma oscillation has a complex physiology and is associated with a variety of mental disease processes. More detailed records about the mechanism of production, the physiological and pathophysiological significance of gamma band oscillation and so on are elaborated in this paper.

文章引用:
周永霞, 侯丽君, 姜洪波. Gamma神经振荡的病理生理意义[J]. 国际神经精神科学杂志, 2013, 2(4): 21-25. http://dx.doi.org/10.12677/IJPN.2013.24006

参考文献

[1] Kotani, K., et al. (2014) Population dynamics of the modified theta model: Macroscopic phase reduction and bifurcation analysis link microscopic neuronal interactions to macroscopic gamma oscillation. Journal of the Royal Society Interface, 95, Article ID: 20140058.
[2] Jefferys, J.G.R. and Traub, R.D. and Whittington, M.A. (1996) Neuronal networks for induced 40 Hz rhythms. Trends in Neu-rosciences, 19, 202-208.
[3] Gurtubay, I.G., Alegre, M., Labarga, A., et a1. (2001) Gamma band activity in an auditory oddball paradigm studied with the wavelet transform. Clinical Neurophysiology, 112, 1219-1228.
[4] Senkowski, D. and Herrmann, C.S. (2002) Effects of task difficulty on evoked gamma activity and ERPs in a visual dis-crimination task. Clinical Neurophysiology, 113, 1742-1753.
[5] Slobounov, S., Tutwiler, R., Slobounova, E., et a1. (2000) Human oscillatory brain activity within gamma band 30-50 H z induced by visual recognition of non-Stable postures. Cognitive Brain Research, 9, 177.
[6] Grubera, T., et a1. (2001) Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neuroscience Letters, 316, 29-32.
[7] Gruber, T., et a1. (1999) Selective visual—spatial attention alters induced gamma band responses in the human EEG. Clinical Neurophysiology, 110, 2074-2085.
[8] Gruber, T., et a1. (2002) Ef-fects of picture repetition on induced gamma band responses, evoked potentials, and phase synchrony in the human EEG. Cognitive Brain Research, 13, 377.
[9] Kaiser, J., Rahm, B. and Lutzenberger, W. (2009) Temporal dynamics of stimulus-specific gamma-band activity components during auditory short-term memory. Neuroimage, 44, 257-264.
[10] Tallon-Baudry, C. (2009) The roles of gamma-band oscillatory synchrony in human visual cognition. Frontiers in Bios-cience, 14, 321-332.
[11] Sederberg, P.B., Schulze-Bonhage, A., Madsen, J.R., et al. (2007) Hippocampal and neocortical gamma oscillations predict memory formation in humans. Cerebral Cortex, 17, 1190-1196.
[12] Lakatos, P., Karmos, G., Mehta, A.D., et al. (2008) Entrainment of neuronal oscillations as a mechanism of attentional selection. Science, 320, 110-113.
[13] Lee, K.H., Williams, L.M., Haig, A., et al. (2001) An integration of 40 Hz Gamma and phasic arousal: Novelty and routinization processing in schizophrenia. Clinical Neuro-physiology, 112, 14991507.
[14] Correa, A. and Nobre, A.C. (2008) Spatial and temporal acuity of visual perception can be enhanced selectively by attentional set. Experimental Brain Research, 189, 334-339.
[15] Schroeder, C.E. and Lakatos, P. (2009) Low-frequency neuronal oscillations as instruments of sensory selection. Trends in Neurosciences, 32, 9-18.
[16] Legros, A., Corbacio, M., Beuter, A., Modolo, J., Goulet, D., Prato, F.S. and Thomas, A.W. (2012) Neuro-physiological and behavioral effects of a 60 Hz, 1,800 μT magnetic field in humans. European Journal of Applied Physiology, 112, 1751-1762.
[17] Cheyne, D., Bells, S., Ferrari, P., Gaetz, W. and Bos-tan, A.C. (2008) Self-paced movements induce highfrequency gamma oscillations in primary motor cortex. NeuroImage, 42, 332-342.
[18] Uhlhaas, P.J., Linden, D.E.J., Singer, W., Haenschel1, C., Lindner, M., Maurer, K. and Rodriguez, E. (2006) Dysfunctional long-range coordination of neural activity during Gestalt perception in schizophrenia. The Journal of Neuroscience, 26, 81688175.
[19] Uhlhaas, P.J. and Singer, W. (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nature Reviews Neuros-cience, 11, 100-113.
[20] Haenschel, C., Bittner, R., Waltz, J., Haer-tling, F., Wibral, M., Singer, W., Linden, D.E.J. and Rodriguez, E. (2009) Cortical oscillatory activity is critical for working memory as revealed by deficits in early-onset schizophrenia. The Journal of Neuroscience, 29, 9481-9489.
[21] Wilson, T.W., Rojas, D.C., Reite, M.L., Teale, P.D. and Rogers, S.J. (2007) Children and adolescents with autism exhibit reduced MEG steady-state gamma responses. Biological Psychiatry, 62, 192-197.
[22] Koenig, T., Prichep, L., Dierks, T., et al. (2005) Decreased EEG synchronization in Alzheimer’s disease and mild cognitive impairment. Neurobiology of Aging, 26, 165-171.
[23] Stam, C.J., Jones, B.F., Nolte, G., Breakspear, M. and Scheltens, Ph. (2007) Small-world networks and functional connectiv-ity in Alzheimer’s disease. Cerebral Cortex, 17, 92-99.
[24] Cardin, J.A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L.H. and Moore, C.I. (2009) Driving fastspiking cells induces gamma rhythm and controls sensory responses. Nature, 459, 663-667.
[25] Bartos, M., Vida, I. and Jonas, P. (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nature Reviews Neuroscience, 8, 45-56.
[26] Colgin, L.L. and Moser, E.L. (2010) Gamma oscillations in the hippocampus. Physiology (Bethesda), 25, 319-329.
[27] Tallon-Baudry, C., Bertrand, O., Peronnet, F. and Pernier, J. (1998) Induced gamma-band activity during the delay of a visual short-term memory task in humans. Journal of Neuroscience, 18, 4244-4254.
[28] Colgin, L.L. (2012) Slow gamma takes the reins in replay. Neuron, 75, 549-550.
[29] Carr, M.R., Karlsson, M.P. and Frank, L.M. (2012) Transient slow gamma synchrony underlies hippocampal memory replay. Neuron, 75, 700-713.
[30] Hentschke, H., Perkins, M.G., Pearce, R.A. and Banks, M.I. (2007) Muscarinic blockade weakens interaction of gamma with theta rhythms in mouse hippocampus. European Journal of Neuroscience, 26, 1642-1656.
[31] 王奎, 许琳, 严明, 吴杰 (2008) 海马θ振荡的研究进展. 生理科学进展, 4, 331-334.
[32] Bork, J.A., Rogers, T., Wedlund, P.J. and de Leon, J. (2000) A pilot study on risperidone metabolism: The role of cytochromes P450 2D6 and 3A. Journal of Clinical Psychiatry, 60, 469-476.
[33] Shin, Y.W., O’Donnell, B.F., Youn, S. and Kwon, J.S. (2011) Gamma oscillation in schizophrenia. Psychiatry Investigation, 8, 288-296.
[34] Yasui-Furukori, N., Kondo, T., Mihara, K., Suzuki, A., Inoue, Y., De Vries, R. and Kaneko, S. (2002) Lack of correlation between the steady-state plasma concentrations of haloperidol and risperidone. Journal of clinical pharmacology, 42, 1083-1088.
[35] Le Van, Q.M., Aadam, C., Llachaux, J.P., et a1. (1997) Temporal patterns in human epileptic activity are modulated by perceptual discriminations. Neuroreport, 8, 1703-1710.
[36] 韩丹 (2000) 强直电刺激大鼠海马、中部颞叶新皮质诱发癫痫模型中电振荡癫痫发生的关系研究. 中国神经科学杂志, 2, l08-114.
[37] Castaneda, A.E., Tuulio-Henriksson, A., Marttunen, M., Suvisaari, J. and Lönnqvist, J. (2008) A review on cognitive impair-ments in depressive and anxiety disorders with a focus on young adults. Journal of Affective Disorders, 106, l-27.
[38] 王守镜 (2013) 情绪图片在抑郁症病人与正常人中诱发的Gamma波活动研究. 电子科技大学, 成都.
[39] 郑晨光 (2013) 大鼠theta和gamma神经振荡参与调节突触可塑性及潜在机制探究. 南开大学, 天津.
[40] Stam, C.J., van Cappellen Walsum, A.M., Pijnenburg, Y.A., et a1. (2002) Generalized synchronization of MEG recordings in Alzheimer’s disease: Evidence for involvement of the gamma band. Journal of Clinical Neurophysiology, 19, 562-574.
[41] Koenig, T., Prichep, L., Dierks, T., Hubl, D., Wahlund, L.O., John, E.R. and Jelic, V. (2005) Decreased EEG synchronization in Alzheimer’s disease and mind cognitive impairment. Neurobiology of Aging, 26, 165-171.
[42] 王瑶 (2012) 孤独症的神经振荡同步分析. 燕山大学, 北京.