一类潜在的文物表面防护材料:光致变色材料
A Potential Surface Protective Material of Cultural Relics: Photochromic Material
DOI: 10.12677/AMC.2014.23006, PDF, HTML, 下载: 3,743  浏览: 11,291  科研立项经费支持
作者: 刘虎, 梁涛:新疆维吾尔自治区文物古迹保护中心,乌鲁木齐
关键词: 文物保护材料光致变色材料文物修复表面防护Cultural Relics Protection Material Photochromic Material Cultural Relics Restoration Surface Protection
摘要: 光致变色材料是一类具有特殊性能的功能材料,其在信息存储、细胞成像、分子开关、显示器材料、全息防伪及信息无损读出等方向有着潜在的应用价值。由于光致变色材料吸收强紫外线,因此在文物的表面修复过程中加入一些光致变色材料将提高文物表面的抗老化性和可再处理性,该材料有可能起到修复和保护的功能,进而带来经济效益。本文指出目前文物保护材料的不足之处,介绍一些光致变色材料的优点和合成方法,探讨这些新材料在文物保护方面应用的可能性。
Abstract: The photochromic material is a functional material, which has a potential application value for the information store, cell imaging, molecular switch, display, holographic anti-counterfeiting materials and information non-destructive readout. Repairing surface of the cultural relics dopes some photochromic material into the protection material to absorb strong ultraviolet ray and to improve the aging resistance on the surface of the cultural relics. The photochromic material may have the function of restoration and protection, and bring economic benefits. This paper presents the deficiency of the current cultural relics protection material, introduces some advantages and synthesis methods of photochromic materials, and discusses the possibility of the new material application in the cultural relics protection field.
文章引用:刘虎, 梁涛. 一类潜在的文物表面防护材料:光致变色材料[J]. 材料化学前沿, 2014, 2(3): 39-42. http://dx.doi.org/10.12677/AMC.2014.23006

参考文献

[1] Laurie, A.P. and Ranken, C. (1978) The preservation of decaying stone. Journal of the Society of Chemical Industry, 37, 137-14.
[2] Garrido, J.M. (1967) The portal of the monastery of santa maria de ripoll. Monumentum, 1, 79-98.
[3] Scott, G.G. (1981) Process as applied to rapidly decayed stone in westminsterabbey. The Builder (London), 19, 10.
[4] Selwitz, C. (1992) Epoxy resins in stone conservation, research in conservation. Westland Graphics, Laurel, 7.
[5] James, R.C. (1980) Stone consolidating materials: A status report. Department of Commerce, National Bureau of Standards, Washington DC, 5.
[6] Price, C.A. (1996) Stone conservation: An overview of current research. Getty Conservation Institute, Los Angeles, Publication Coordinator: Dinah Berland, Printed in the United States of America.
[7] Adiletta, J.G. (1999) Hydrophobic oleophobic fluropolymer compositions. US patent 5981614.
[8] 樊美公 (1997) 光子存储原理与光致变色材料. 化学进展, 2, 170-178.
[9] Pang, S.C., Hyun, H., Lee, S., Jang, D., Lee, M.J., Kang, S.H. and Ahn, K.H. (2012) Photoswitchable fluorescent diarylethene in a turn-on mode for live cell imaging. Chemical Communications, 48, 3745-3747.
[10] Suzuki, K., Ubukata, T. and Yokoyama, Y. (2012) Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin. Chemical Communications, 48, 765-767.
[11] Tan, W.J., Li, X., Zhang, J.J. and Tian, H. (2011) A photochromic diarylethene dyad based on perylene diimide. Dyes and Pigments, 89, 260-265.
[12] Lee, E.M., Gwon, S.Y., Ji, B.C., Wang, S. and Kima, S.H. (2011) Photoswitching electrospun nanofiber basedon a spironaphthoxazine-isophorone-based fluorescent dye system. Dyes and Pigments, 92, 542-547.
[13] Pu, S.Z., Jiang, D.H., Liu, W.J., Liu, G. and Cui, S.Q. (2012) Multi-addressable molecular switches based on photochromic diarylethenes bearing a rhodamine unit. Journal of Materials Chemistry, 22, 3517-3526.
[14] Hu, M., Kawauchi, S. and Satoh, M. (2002) Two-photon photochromism of two simple chromene derivatives. Journal of Photochemistry and Photobiology A: Chemistry, 150, 131-141.