土壤科学  >> Vol. 2 No. 3 (July 2014)

三峡库区植物篱系统土壤颗粒分布及粘粒与土壤理化性质关系
Soil Particle Distribution and Relationship between Soil Silt Concentration and Physicochemical Properties of Hedgerow Systems in the Three Gorges Reservoir Area

DOI: 10.12677/HJSS.2014.23003, PDF, HTML, 下载: 2,353  浏览: 10,346  国家科技经费支持

作者: 黎建强, 陈奇伯:西南林业大学环境科学与工程学院,昆明;张洪江:北京林业大学水土保持学院,北京

关键词: 植物篱土壤颗粒分布土壤理化性质相关关系Hedgerow Soil Particle Distribution Soil Physicochemical Properties Correlation

摘要: 在调查分析长江三峡库区现有坡耕地植物篱的配置方式、生长状况和室内分析植物篱系统内土壤颗粒组成和土壤理化性质的基础上,对3种植物篱系统中土壤颗粒分布特征及土壤粘粒与土壤理化性质的关系进行了研究,结果表明:1) 植物篱系统中不同位置土壤颗粒含量存在显著差异,乔木类、草本类和灌木类植物篱带间坡耕地土壤砂粒含量比其对应的植物篱带内土壤砂粒平均含量分别高10.4%,13.7%和9.2%;而粘粒含量在植物篱带内富集,其平均含量比植物篱带间坡耕地土壤粘粒含量分别高14.3%,19.5%和10.7%;2) 植物篱系统内土壤粘粒含量与土壤孔隙度、土壤含水量、饱和导水率、土壤抗冲指数、土壤抗蚀指数、水稳性团聚体极显著正相关,而与土壤容重呈显著负相关关系。3) 土壤粘粒含量与土壤全氮、有效氮、土壤全钾、有效钾、全磷、有效磷和阳离子交换量具有极显著正相关关系。
Abstract: To achieve the soil particle distribution characters and the relationship between physicochemical properties of hedgerow systems in the Three Gorges reservoir area, soil particle size composition and physicochemical properties of soil collected from different position in hedgerow systems with different species were tested, and the coefficient between soil silt concentration and physico-chemical properties were analyzed. The result revealed that 1) the particle size concentration in the hedgerow systems diversified significantly. The soil sand concentration in the steep land be- tween hedgerows with different species was higher than that of soil within hedgerows stipe, by 10.4%, 13.7% and 9.2% respectively. However, the soil silt concentration enriched within hedge- rows strip, and the mean value of soil silt concentration with different species increased by 14.3%, 19.5% and 10.7% respectively compared with the soil between hedgerow steeps. 2) The silt con- centration of soil in hedgerow systems were correlated positively and highly significantly (P < 0. 01) with the soil porosity, water content, soil saturated water conductivity, anti-erodibility, anti- scouribility and soil water stable aggregates content, and correlated negatively with soil bulk density. 3) The silt concentration of soil in hedgerow systems were positively correlated with soil nutrients, containing total and exchangeable nitrogen, total and exchangeable phosphorus, total and exchangeable potassium, and cation exchangeable capacity.

文章引用: 黎建强, 张洪江, 陈奇伯. 三峡库区植物篱系统土壤颗粒分布及粘粒与土壤理化性质关系[J]. 土壤科学, 2014, 2(3): 17-22. http://dx.doi.org/10.12677/HJSS.2014.23003

参考文献

[1] 祝其丽, 孙辉, 何道文, 等 (2007) 植物篱种植模式综合效益研究. 四川环境, 3, 41-45, 54.
[2] 孙辉, 唐亚, 陈克明, 等 (2001) 等高固氮植物篱控制坡耕地地表径流的效果. 水土保持通报, 2, 48-51.
[3] 王燕, 宋凤斌, 刘阳 (2006) 等高植物篱种植模式及其应用中存在的问题. 广西农业生物科学, 4, 369-373.
[4] 王青杵, 王彩琴, 杨丙益 (2001) 黄土残塬沟壑区植物篱水土保持效益研究. 中国水土保持, 12, 25-26.
[5] 袁远亮, 孙辉, 唐亚 (2001) 等高固氮植物篱脐橙园生态效益研究. 中国农业生态学报, 4, 76-78.
[6] 林超文, 涂仕华, 黄晶晶, 等 (2007) 植物篱对紫色土区坡耕地水土流失及土壤肥力的影响. 生态学报, 6, 2191- 2198.
[7] 黎建强, 张洪江, 程金花, 等 (2010) 不同类型植物篱对长江上游坡耕地土壤养分含量及坡面分布的影响. 生态环境学报, 11, 2574-2580.
[8] 黎建强, 张洪江, 程金花, 等 (2011) 长江上游不同植物篱系统的土壤物理性质. 应用生态学报, 2, 418-424.
[9] 中国科学院南京土壤研究所 (1978) 土壤理化分析. 上海科技出版社, 上海.
[10] 邵明安, 王九全, 黄明斌 (2006) 土壤物理学. 高等教育出版社, 北京.
[11] 魏孝荣, 邵明安 (2007) 黄土高原沟壑区小流域坡地土壤养分分布特征. 生态学报, 2, 604-612.
[12] 中国农学会 (2000) 土壤农业化学分析方法. 中国农业出版社, 北京.
[13] Young, A. (1989) Agroforestry for soil conservation. CAB International, Wallingford.
[14] Lal, R. (1989) Agroforestry systems and soil surface management of a tropical Alfisol: II: Water runoff, soil erosion and nutrient loss. Agroforestry Systems, 8, 97-111.
[15] Pelleck, R. (1992) Contour hedgerows and other soil conservation interventions for hilly terrain. Agroforestry Systems, 17, 135-152.
[16] Magette, W.L., Brinsfield, R.B., Palmer, R.E., et al. (1989) Nutrient and sediment removal by vegetated filter strips. American Society of Agricultural Engineering, 32, 663-667.
[17] Martin, M.Á., Rey, J.M. and Taguas, F.J. (2001) An entropy-based parameterization of soil texture via fractal modeling of particle-size distribution. Proceedings of the Royal Society, 457, 937-947.
[18] Bevan, K. and German, P. (1982) Macropores and water flow in soils. Water Resource Research, 18, 1311-1325.
[19] Parton, W.J., Stewart, J. and Cole, V.C. (1998) Dynamics of C, N, P and S in grassland soils: A model. Biogeochemi- stry, 5, 109-131.
[20] 佟金, 任露泉, 陈秉聪, 等 (1994) 土壤颗粒尺寸分布分维及对粘附行为的影响. 农业工程学报, 3, 27-33.
[21] 顾峰雪, 潘晓玲, 潘伯荣, 等 (2002) 塔克拉玛干沙漠腹地人工植被土壤肥力变化. 生态学报, 8, 1179-1188.
[22] 徐阳春, 沈其荣 (2000) 长期施用不同有机肥对土壤各粒级复合体中C、N、P含量与分配的影响. 中国农业科学, 5, 1-7.