基于ABAQUS的橡胶垫隔震支座单元二次开发
Rubber Isolation Bearing Element Secondary Development Based on ABAQUS
DOI: 10.12677/HJCE.2014.34014, PDF, HTML, 下载: 3,682  浏览: 9,098  国家自然科学基金支持
作者: 王 晖, 方明胜, 孙作玉:广州大学土木工程学院,广州
关键词: 橡胶垫隔震非线性滞回特性ABAQUS二次开发仿真分析Rubber Isolation Non-Linear Hysteresis ABAQUS Secondary Development Simulation
摘要: 橡胶垫隔震技术是减轻建筑结构在地面地震动激励下动力响应的有效措施,得到了日益广泛的工程应用。隔震的结构也由普通的低矮建筑拓展到一些复杂结构,如一些不规则的建筑场馆、桥梁,目前在高层建筑中也得到了应用。这对结构的动力响应分析提出了越来越高的要求,特别是对大型复杂结构,如何模拟橡胶垫的非线性特性,并结合到结构的有限元分析中,已成为影响橡胶垫隔震技术推广应用的一个关键问题。本文基于ABAQUS的二次开发平台,采用Bouc-Wen模型描述其水平恢复力的滞回特性,同时考虑竖向刚度的拉压异性,对橡胶垫隔震支座单元进行了二次开发,其中Bouc-Wen的参数可以根据需要进行合理的调节和设置,基于所开发的软件,对一个不规则结构进行了仿真分析,探索了隔震的影响效果。
Abstract: Rubber isolation technology is an effective means to mitigate the dynamic responses of a building under seismic excitations, now it has been applied widely in engineering, from those lower stiff buildings to some complicated structures, such as large scale irregular stadium, bridges, and even high rise buildings recently. Such trends lead to higher requirements for dynamics response ana- lysis, especially for those larger scale structure, the arisen key problem is how to simulate the nonlinear hysteresis property of the rubber bearing, and incorporate the programs in the finite element analysis. Based on the secondary development platform of ABAQUS, we program for the rubber bearing element, in which, the Bouc-Wen model is employed to describe the hysteresis be- havior in lateral, while the strength-differences of vertical stiffness are treated as well. An iregular building is simulated to investigate the effects of base isolation by using the developed program.
文章引用:王晖, 方明胜, 孙作玉. 基于ABAQUS的橡胶垫隔震支座单元二次开发[J]. 土木工程, 2014, 3(4): 110-121. http://dx.doi.org/10.12677/HJCE.2014.34014

参考文献

[1] 日本建筑学会, 著 (2006) 刘文光, 译. 隔震结构设计. 地震出版社, 北京.
[2] 刘文光 (2003) 橡胶隔震支座力学性能及隔震结构的地震反应分析研究. 博士学位论文, 北京工业大学, 北京.
[3] 唐家祥, 刘再华 (1993) 建筑结构基础隔震. 华中理工大学出版杜, 武汉.
[4] 周福霖 (1997) 工程结构减震控制. 地震出版社, 北京.
[5] Skinner, R.I., Robinson, W.H. and Mcverry, G.H. (1996) An introduction to seismic isolation. Geological Magazine, 133, 631-632.
[6] Bouc, R. (1967) Forced vibration of mechanical systems with hysteresis. Proceedings of Fourth Conference on Non- Linear Oscillation, Prague, 5-9 September 1967.
[7] Wen, Y.K. (1986) Stochastic response and damage analysis of inelastic structures. Probabilistic Engineering Mechan- ics, 1, 49-57.
[8] 徐赵东, 沈亚鹏 (2003) 磁流变阻尼器的计算模型及仿真分析. 建筑结构, 1, 68-70.
[9] 杨广强, Spencer, B.F., Sain, M.K., 等 (2001) 足尺磁流变阻尼器的建模及动态特性. 地震工程与工程振动, 4, 8-23.
[10] 关新春, 欧进萍 (2001) 磁流变耗能器的阻尼力模型及其参数确定. 振动与冲击, 1, 5-8.
[11] 黄建文, 赵斌 (2000) 叠层橡胶支座基础隔震建筑的非线性时程分析. 西安科技学院学报, 4, 317-321.
[12] 冷小磊, 李军强, 等 (2002) 地震激励下主次结构的非线性隔振与动力吸振分析. 西北工业大学学报, 3, 373-377.