现代物理  >> Vol. 4 No. 4 (July 2014)

量子真空能及其对引力规范理论的启示
Quantum Vacuum Energy and Its Implication to Gravitational Gauge Theory

DOI: 10.12677/MP.2014.44009, PDF, HTML, 下载: 2,639  浏览: 16,066 

作者: 沈建其:浙江大学(紫金港校区),光及电磁波研究中心,杭州

关键词: 量子真空能引力规范理论自旋联络宇宙学常数问题Quantum Vacuum Energy Gravitational Gauge Theory Spin-Affine Connection Cosmological Constant Problem

摘要: 电磁规范理论及其推广(Yang-Mills理论)在量子场论和粒子物理领域取得了成功要求引力理论也应当是某种局域规范对称下的规范场论;对于量子真空能巨大引力效应与宇宙学观察事实之间的矛盾等问题的探究表明传统引力理论可能是一个低能唯象理论,可能还存在新的高能引力相互作用基本理论。本文介绍了一个新的自旋联络引力规范理论,它以局域Lorentz群为规范对称群、以自旋仿射联络作为非Abel规范场。在低能条件下,我们可以获得一个度规的三阶微分方程作为引力场方程,而爱因斯坦引力场方程作为其一个首次积分解呈现。在该理论中,量子真空能巨大引力效应不再存在,并产生了一个等效宇宙学常数(作为首次积分解的积分常数),这可能为解决宇宙学常数之谜提供了一条思路。对引力规范理论本身及其在宇宙学中的运用作了一些讨论, 如该引力规范理论会呈现一种准流体(它在四维宇宙中类似暗辐射;在五维宇宙中,则呈现更为丰富的物态),因此基于该引力规范理论的五维宇宙学在不需要引入真实暗物质和暗能量的条件下也能产生等效的暗物质和暗能量效应。
Abstract: Since electromagnetic gauge theory and its generalization (Yang-Mills gauge field theory) have succeeded in quantum field theory and particle physics, it requires that the theory of gravitation also be a gauge field theory under certain local gauge symmetries, e.g., local Lorentz or Poincaré invariance. The discrepancy between unusually large quantum vacuum energy density and ob-servational cosmology may indicate that the generic gravity theory of Einstein is a low-energy phenomenological theory, and a more fundamental theory of gravity might be hidden behind it. A new spin-connection gauge theory for gravitational interaction at high energies (close to the Planck energy scale) is introduced. In such a gravitational gauge field theory, the local Lorentz group is the gauge symmetry group, and the spin-affine connection serves as a non-Abel gauge field (fundamental dynamical variable). A third-order differential equation of metric can be obtained as the gravitational gauge field equation, where the Einstein field equation of gravitation is a first-integral solution. As the vacuum energy density is a constant, the covariant derivative of its energy-momentum tensor unavoidably vanishes. Therefore, the quantum vacuum energy term disappears in the gravitational gauge field equation, and the anomalously large vacuum energy density does not make a practical contribution to gravity. This would enable us to seek for a new route to the longstanding vacuum-energy cosmological constant problem. Some topics relevant to gravitational gauge theory and its applications in cosmology are also addressed. For example, the five-dimensional cosmology within the framework of the present gravitational gauge theory, in which a quasi fluid is emergent, can exhibit the effects of equivalent dark matter and dark energy.

文章引用: 沈建其. 量子真空能及其对引力规范理论的启示[J]. 现代物理, 2014, 4(4): 62-79. http://dx.doi.org/10.12677/MP.2014.44009

参考文献

[1] Jackson, J.D. (2001) Classical Electrodynamics. 3rd Edition, John Wiley & Sons, New York.
[2] 沈建其 (2009) 电动力学与光学相关专题研究进展. 全国高校第十二届《电动力学》教学暨学术研讨会报告文选, 福建泉州师范学院, 2009年8月23-27日, 13-26.
[3] Shen, J.Q. (2009) A gravitational constant and a cosmological constant in a spin-connection gravitational gauge field theory. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 155401.
[4] Ryder, L.H. (1996) Quantum field theory. 2nd Edition, Cambridge University Press, UK.
[5] 姜志进 (2009) 韦耳与规范场理论. 全国高校第十二届《电动力学》教学暨学术研讨会报告文选, 福建泉州师范学院,2009年8月23-27日, 29-35.
[6] Yang, C.N. and Mills, R.L. (1954) Conservation of isotopic spin and isotopic gauge invariance. Physics Review, 96, 191-195.
[7] 戴元本 (2005) 相互作用的规范理论(现代物理基础丛书5). 第二版, 科学出版社, 北京.
[8] 章乃森 (1994) 粒子物理学(上、下册). 科学出版社, 北京.
[9] 何汉新 (2009) 核色动力学导论. 中国科学技术大学出版社, 合肥.
[10] Weinberg, S. (1972) Gravitation and cosmology. John Wiley, New York.
[11] Ohanian, H. and Ruffini, R. (1994) Gravitation and sapcetime. W.W. Norton & Company, Inc., Press, New York.
[12] Casimir, H.B.G. (1948) On the attraction between two perfectly conducting plates. Koninklijke Nederlandse Akademie van Wetenschappen, 51, 793-795.
[13] Weinberg, S. (1989) The Cosmological constant problem. Review of Modern Physics, 61, 1-23.
[14] Padmanabhan, T. (2003) Cosmological constant—The weight of the vacuum. Physics Reports, 380, 235-320.
[15] Peebles, P.J.E. and Ratra, B. (2003) The cosmological constant and dark energy. Review of Modern Physics, 75, 559- 606 (and references therein).
[16] Bousso, R. (2008) The cosmological constant. General Relativity and Gravitation, 40, 607-637 (and references therein).
[17] Shen, J.Q. (2002) Gravitational analogues, geometric effects and gravitomagnetic charge. General Relativity and Gravitation, 34, 1423-1435.
[18] Shen, J.Q. (2004) The dual curvature tensors and dynamics of gravitomagnetic matter. Annalen der Physik (Leipzig), 13, 532-553.
[19] Sun, C.P., Wang, Y.D., Li, Y. and Zhang, F. (2003) Fundamental concepts and methods in microcavity QED. In: Zeng, J. Y., Long, G. L. and Pei, S. Y., Eds., New Progress in Quantum Mechanism, Vol. 3, Tsinghua University Press, Beijing, Chapter 4.
[20] Shen, J.Q. and He, S. (2006) Dimension-sensitive optical responses of electromagnetically induced transparency vapor in a waveguide. Physical Review A, 74, Article ID: 063831.
[21] Kleppner, D. (1981) Inhibitedspontaneous emission. Physical Review Letters, 47, 233-236.
[22] Feigel, A. (2004) Quantum vacuum contribution to the momentum of dielectric media. Physical Review Letters, 92, Article ID: 020404.
[23] Shen, J.Q. and Zhuang, F. (2006) Momentum transfer from vacuum field to anisotropic electromagnetic media. Optics Communications, 257, 84-90.
[24] Shen, J.Q. (2008) Momentum transfer between quantum vacuum and anisotropic medium. Progress of Theoretical Physics, 119, 351-360.
[25] Shen, J.Q. (2010) Anisotropic distribution of quantum-vacuum momentum density in a moving electromagnetic medium. Annalen der Physik (Berlin), 522, 524-531.
[26] Shen, J.Q. (2008) Field quantization and vacuum effects in a chiral medium. Journal of Optical Society of America B, 25, 1864-1872.
[27] Gao, X.C. (2002) Geometric phases for photons in an optical fibre and some related predictions. Chinese Physics Letters, 19, 613-616.
[28] Perlmutter, S., Aldering, G., Valle, M.D., Deustua, S., Ellis, R.S., Fabbro, S., et al. (1998) Discovery of a supernova explosion at half the age of the Universe. Nature, 391, 51-54.
[29] Perlmutter, S., Aldering, G., Goldhaber, G., Knop, R.A., Nugent, P., Castro, P.G., et al. (1999) Measurements of Ω and Λ from 42 high-redshift supernovae. The Astrophysical Journal, 517, 565-586.
[30] Riess, A.G., Filippenko, A.V., Challis, P., Clocchiattia, A., Diercks, A., Garnavich, P.M., et al. (1998) Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astrophysical Journal, 116, 1009-1038.
[31] Buchert, T. (2008) Dark energy from structure: A status report. General Relativity and Gravitation, 40, 467-527 (and references therein).
[32] Durrer, R. and Maartens, R. (2008) Dark energy and dark gravity: Theory overview. General Relativity and Gravitation, 40, 301-328 (and references therein).
[33] Wu, Y.S., Zou, Z.L. and Chen, S. (1973) The vacuum solution of the gravitational gauge theory and its three experimental verifications. Chinese Science Bulletin, 18, 119-121.
[34] Wu, Y.S., Li, G.D. and Guo, H.Y. (1974) Gravitational Lagrangian and its local de Sitter invariance. Chinese Science Bulletin, 19, 509-512.
[35] An, Y., Chen, S., Zou, Z.L. and Guo, H.Y. (1976) A new theory of gravity: A formalism of local de Sitter invariance for gravity. Chinese Science Bulletin, 22, 379-382.
[36] 郭汉英 (1980) 引力规范理论. 现代物理第一辑(自然杂志增刊), 上海科学技术出版社, 86-90.
[37] Huang, C.G., Zhang, H.Q. and Guo, H.Y. (2008) Cosmological solutions with torsion in a model of the de Sitter gauge theory of gravity. Journal of Cosmology and Astroparticle Physics, 2008, 010.
[38] Camenzind, M. (1978) Weak and strong sources of gravity: An SO(1,3)-gauge theory of gravity. Physical Review D, 18, 1068-1081.
[39] Camenzind, M. (1978) Homogeneous and isotropic world models in the Yang-Mills dynamics of gravity: The structure of the adiabats. Journal of Mathematical Physics, 19, 624-634.
[40] Camenzind, M. (1975) Theories of gravity with structure-dependent γ’s. Physical Review Letters, 35, 1188-1189.
[41] Camenzind, M. (1977) On the Yang-Mills structure of gravitation: A new issue of the final state. General Relativity and Gravitation, 8, 103-108.
[42] 王仁川 (1996) 广义相对论引论. 第十章, 中国科学技术大学出版社, 安徽合肥, 242-276.
[43] Hehl, F.W., von der Heyde, P., Kerlick, G.D. and Nester, J.M. (1976) General relativity with spin and torsion: Foun- dations and prospects. Review of Modern Physics, 48, 393-416 (and references therein).
[44] Capozziello, S. and Francaviglia, M. (2008) Extended theories of gravity and their cosmological and astrophysical applications. General Relativity and Gravitation, 40, 357-420 (and references therein).
[45] Wu, N. (2006) Unified theory of fundamental interactions. In: Reimer, A., Ed., Quantum Gravity Research Trends, Nova Science Publishers, Inc., New York, 83-122.
[46] Blagojevic, M. and Vasilic, M. (2003) Asymptotic symmetries in 3D gravity with torsion. Physical Review D, 67, Article ID: 084032.
[47] Arcos, H.I. and Pereira, J.G. (2004) Torsion gravity: A reappraisal. International Journal of Modern Physics D, 13, 2193-2240.
[48] Garcia de Andrade, L.C. (2001) Torsion strings inside static black holes in teleparallel Gravity. arXiv: gr-qc/0102086
[49] Hammond, R.T. (2002) Torsion gravity. Reports on Progress in Physics, 65, 599-649.
[50] Shen, J.Q. (2009) Complex metric, torsion, spin-connection gauge field and gravitomagnetic monopole. In: Levy, M.B., Ed., Mathematical Physics Research Developments, Nova Science Publishers, Inc., New York, 419-526.
[51] Shen, J.Q. (2009) Gravitational gauge theory developed based on the Stephenson-Kilmister-Yang equation. Interna-tional Journal of Theoretical Physics, 48, 1566-1582.
[52] Shen, J.Q. (2010) A low-energy phenomenological theory of Yang-Mills formulation of gravitation. International Journal of Theoretical Physics, Group Theory and Nonlinear Optics, 14, 111-150.
[53] Shen, J.Q. (2010) Spin-connection gauge field theory of gravitation. International Journal of Theoretical Physics, Group Theory and Nonlinear Optics, 14, 43-62.
[54] Shen, J.Q. (2010) A first-integral solution for Einstein gravity in a spin-connection gravitational gauge theory. International Review of Physics, 4, 7-19.
[55] Yang, C.N. (1974) Integral formalism for gauge fields. Physical Review Letters, 33, 445-447.
[56] Pavelle, R. (1974) Yang’s gravitational field equations. Physical Review Letters, 33, 1461-1463.
[57] Thompson, A.H. (1975) Geometrically degenerate solutions of the Kilmister-Yang equations. Physical Review Letters, 35, 320-322.
[58] Stephenson, G. (1958) Quadratic Lagrangians and general relativity. Il Nuovo Cimento, 9, 263-269.
[59] Pavelle, R. (1975) Unphysical solutions of Yang’s gravitational-field equations. Physical Review Letters, 34, 1114.
[60] Thompson, A.H. (1975) Yang’s gravitational field equations. Physical Review Letters, 34, 507-508.
[61] Ni, W.T. (1975) Yang’s gravitational field equations. Physical Review Letters, 35, 319-320.
[62] Guilfoyle, B.S. and Nolan, B.C. (1998) Yang’s gravitational theory. General Relativity and Gravitation, 30, 473-495.
[63] Shen, J.Q. (2013) The low-energy Yang-Mills gravitational gauge theory and its application to astrophysics and cosmology. In: Zoeng, T. and Ngai, M., Eds., New Developments in Low-Energy Physics Research, Chapter 2, Nova Science Press, New York, 13-126.
[64] Spergel, D.N., Verde, L., Peiris, H.V., Komatsu, E., Nolta, M.R., Bennett, C.L., et al. (2003) First-Year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters. Astrophysical Journal Supplement Series, 148, 175-194.
[65] Ade, P.A.R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., et al. (2013) Planck 2013 results. XVI: Cosmological parameters. arXiv: 1303.5076 [astro-ph.CO]
[66] Zwaan, M.A., van der Hulst, J.M., de Blok, W.J.G. and McGaugh, S. (1995) The Tully-Fisher relation for low surface brightness galaxies: Implications for galaxy evolution. Monthly Notices of the Royal Astronomical Society, 273, L35- L38.
[67] Billyard, A. and Wesson, P.S. (1996) Class of exact solutions in 5D gravity and its physical properties. Physical Review D, 53, 731-737.
[68] Overduin, J.M. and Wesson, P.S. (1997) Kaluza-Klein gravity. Physics Reports, 283, 303-378.
[69] Begeman, K.G., Broeils, A.H. and Sanders, R.H. (1991) Extended rotation curves of spiral galaxies: Dark haloes and modified dynamics. Monthly Notices of the Royal Astronomical Society, 249, 523-537.
[70] Peter, A.H.G. (2012) Dark matter. arXiv: 1201.3942 [astro-ph.CO]
[71] Moffat, J.W. and Gillies, G.T. (2002) Satellite Eötvös test of the weak equivalence principle for zero-point vacuum energy. New Journal of Physics, 4, 92.
[72] Hsu, J.P. and Hsu, L. (2013) Space-time symmetry and quantum Yang-Mills gravity: How space-time translational gauge symmetry enables the unification of gravity with other forces. World Scientific, Singapore.
[73] Zhang, J. and Chen, X. (1990) Special relativistic gravitational theory. International Journal of Theoretical Physics, 29, 579-597.
[74] Zhang, J. and Chen, X. (1990) Gravitational wave due to explosion of SN 1987A. International Journal of Theoretical Physics, 29, 599-605.
[75] Shen, J.Q. (1999) A theory of gravity in a flat spacetime. (unpublished)