ZnS薄膜的制备及摩擦学性能的研究
Fabrication and Tribological Performance of ZnS Film
DOI: 10.12677/MS.2014.44023, PDF, HTML, 下载: 2,940  浏览: 8,972  科研立项经费支持
作者: 万纬祺:山东省青岛第一中学,青岛;杨淑燕:青岛理工大学机械工程学院,青岛
关键词: 水热法ZnS摩擦学性能减摩耐磨Hydrothermal Method Zinc Sulfide Tribological Performance Friction-Reducing Wear Protection Performance
摘要: ZnS具有密排六方层状结构,层间剪切力较小,是一种有效的固体润滑剂。本文中我们采用水热法在金属锌基底上一步合成ZnS薄膜,这里锌基底既作为锌源参与反应,同时又为ZnS的生长提供基片。利用X-射线衍射和扫描电子显微镜对ZnS薄膜的结构组分和表面形貌进行了表征,同时采用往复式滑动摩擦磨损试验机,考察了干摩擦条件下ZnS薄膜的摩擦学性能。研究结果发现,金属锌经水热处理后,在表面上生成的ZnS薄膜由直径在~0.5μm的ZnS微纳米颗粒组成。在干摩擦条件下,ZnS薄膜可显著降低金属锌的减摩耐磨特性,同时对基底起到了保护作用。
Abstract: ZnS is an effective solid lubricant because its close-packed hexagonal layered structure and low interlayer shear force. In this paper, zinc sulfide films are directly fabricated on zinc substrate through a one-step hydrothermal method. Zinc is used as both zinc source involved in the hydro-thermal reaction and the support for zinc sulfide film. The structure and morphology of ZnS film on zinc substrate are characterized by X-ray diffraction and scanning electron microscopy. The friction properties of ZnS film in dry sliding were observed. The results showed that ZnS film is composed of micro/nano particles with 0.5 μm, providing effective friction-reducing for the zinc substrate under dry sliding contact.
文章引用:万纬祺, 杨淑燕. ZnS薄膜的制备及摩擦学性能的研究[J]. 材料科学, 2014, 4(4): 152-157. http://dx.doi.org/10.12677/MS.2014.44023

参考文献

[1] Jiang, Y., Meng, X. and Liu, J. (2003) Hydrogen-assisted thermal evaporation synthesis of ZnS nano ribbons on a large scale. Advanced Materials, 15, 323-327.
[2] Ma, C., Moore, D. and Li, J. (2003) Nanobelts, nanocombs, and nano-windmills of wurtizite ZnS. Advanced Materials, 15, 228-231.
[3] Moore, D., Ronning, C. and Ma, C. (2004) Wurtzite ZnS nanosaws produced by polar surfaces. Journal of Chemical Physics, 385, 8-11.
[4] Zhu, Y., Bando, Y. and Uemura, Y. (2003) ZnS-Zn nanocables and ZnS nanotubes. Chemical Communications, 7, 836- 837.
[5] Xu, X., Fei, G. and Yu, W. (2006) Preparation and formation mechanism of ZnS semiconductor nanowires made by the electro-chemical deposition method. Nanotechnology, 17, 426-429.
[6] 王海斗, 徐滨士,刘家浚 (2009) 微纳米硫系固体润滑. 科学出版社, 北京, 344-362.
[7] 司洪娟, 徐滨士, 王海斗 (2010) 复合Zn/ZnS层的组织结构及其大气与真空环境下的摩擦学性能. 中国表面工程, 1, 75-79.
[8] Chen, S. and Liu, W.M. (1999) Preparation and characte-rization of surface-coated ZnS nanoparticles. Langmuir, 15, 8100-8104.
[9] Liu, W.M. and Chen, S. (2000) An in-vestigation of the tribologieal behaviour of surface modified ZnS nanopartieles in liquid paraffin. Wear, 238, 120-124.
[10] Liu, W.M. and Chen, S. (2001) Characterization and antiwear ability of non-coated ZnS nanopartieles and DDP-coated ZnS nanoparticles. Materials Research Bulletin, 36, 137-143.
[11] 陈爽, 刘维民 (2000) 亲油性ZnS纳米微粒的合成. 高等学校化学学报, 3, 472-474.
[12] 李祖亮, 毛健, 周永双 (2011) 多孔ZnS纳米片的制备及其作为润滑油添加剂的摩擦学性能研究. 润滑与密封, 12, 60-63.
[13] Wan, Y., Wang, Y.H., Xu, Z., Pu, J.B. and Qi, C.X. (2012) Friction behavior of in situ hydrothermal fabrication of sulfide film on copper. Applied Surface Science, 258, 6013-6017.
[14] Zhu, Y., Mei, T. and Wang, Y. (2011) Formation and morphology control of nanoparticles via solution routes in an autoclave. Journal of Materials Chemistry, 21, 11457-11463.
[15] Wang, L., Dai, J. and Liu, X. (2012) Morphology-controlling synthesis of ZnS through a hydrothermal/solvthermal method. Ceramics International, 38, 1873-1878.
[16] Yue, G.H., Yan, P.X. and Yan, D. (2006) Hydrothermal synthesis of single-crystal ZnS nanowires, Applied Physics A: Materials Science & Processing, 84, 409-412.
[17] 常鹏, 刘肃, 王秀华 (2007) 水热法制备硫化锌纳米线及性能研究, 人工晶体学报, 4, 817-822.
[18] 黄林勇, 刘宏, 刘铎, 王继扬 (2010) 锌基硫化锌纳米棒阵列的溶剂热原位合成及其光学性质. 化工学报, 10, 2714-2718.