OE  >> Vol. 4 No. 3 (September 2014)

    Improvement of Holographic Properties in Nanoparticles Dispersed Photopolymer

  • 全文下载: PDF(1382KB) HTML    PP.21-26   DOI: 10.12677/OE.2014.43004  
  • 下载量: 1,983  浏览量: 7,620   国家自然科学基金支持


倪庆凯,于 丹,耿耀辉,赵元元,李春鹏:天津理工大学理学院,天津

光致聚合物全息光栅纳米粒子衍射效率Photopolymer Holographic Grating Nanoparticles Diffraction Efficiency



The grating formation process in SiO2 nanoparticles dispersed PQ-PMMA photopolymer is inves-tigated. It is demonstrated that the nanoparticles are a significant factor for improvement of holo-graphic properties. In diffusion process, the dark enhancement of grating is measured. In consec-utive polymerization, the temporal evolution of diffraction efficiency is measured for reflecting the grating formation process under consecutive exposure. The mutual diffusion rate between PQ molecule and nanoparticle is estimated by nonlinear fitting method. The corresponding extracted results are important for improving holographic characteristics of the materials.

倪庆凯, 于丹, 耿耀辉, 赵元元, 李春鹏. 纳米粒子掺杂的光致聚合物全息性能改善研究[J]. 光电子, 2014, 4(3): 21-26. http://dx.doi.org/10.12677/OE.2014.43004


[1] Veniaminov, A.V. and Sedunov, Yu.N. (1996) Diffusion of phenanthrenequinone in poly(methyl methacrylate): Holo-graphic measurements. Polymer Science Series A, 38, 56-63.
[2] Steckman, G.J., Solomatine, I., Zhou, G. and Psaltis, D. (1998) Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory. Optics Letters, 23, 1310-1312.
[3] Lin, S.H., Hsu, K.Y., Chen, W.Z. and Whang, W.T. (2000) Phenanthrenequinone-doped poly(methyl methacrylate) photopolymer bulk for volume holographic data storage. Optics Letters, 25, 451-453.
[4] Mahilny, U.V., Marmysh, D.N., Stankevich, A.I., Tolstik, A.L., Matusevich, V. and Kowarschik, R. (2006) Holographic volume gratings in a glass-like polymer material. Applied Physics B, 82, 299-302.
[5] Sato, A. and Kostuk, R.K. (2003) Holographic grating for dense wavelength division optical filters at 1550 nm using phenanth-renquinone doped poly(methyl methacrylate). Proceedings of SPIE, 5216, 44-52.
[6] Kostuk, R.K., Maeda, W. and Chen, C.H. (2005) Cascaded edge illuminated holograms in phenanthrenequinone-doped poly(methyl methacrylate) polymers for optical code division multiplexing applications. Proceedings of SPIE, 5939, Article ID: 593904-1-6.
[7] Luo, Y., Gelsinger, P.J., Barton, J.K., Barbastathis, G. and Kostuk, R.K. (2008) Optimization of multiplexed holographic gratings in PQ-PMMA for spectral-spatial imaging filters. Optics Letters, 33, 566-568.
[8] Luo, Y., Russo, J.M., Kostuk, R.K. and Barbastathis, G. (2010) Silicon oxide nanoparticles doped PQ-PMMA for volume holographic imaging filters. Optics Letters, 35, 1269-1271.
[9] Liu, H., Yu, D., Jiang, Y. and Sun, X. (2009) Characteristics of holographic scattering and its application in determining kinetic parameters in PQ-PMMA photopolymer. Applied Physics B, 95, 513-518.
[10] Liu, H., Yu, D., Li, X., Luo, S., Jiang, Y. and Sun, X. (2010) Diffusional enhancement of volume gratings as an optimized strategy for holographic memory in PQ-PMMA photopolymer. Optics Express, 18, 6447-6454.
[11] Yu, D., Liu, H., Jiang, Y. and Sun, X. (2010) Holographic storage stability in PQ-PMMA bulk photopolymer. Optics Communications, 283, 4219-4223.
[12] Yu, D., Liu, H., Jiang, Y. and Sun, X. (2011) Mutual diffusion dynamics with nonlocal response in SiO2 nanoparticles dispersed PQ-PMMA bulk photopolymer. Optics Express, 19, 13787-13792.
[13] Suzuki, N., Tomita, Y. and Kojima, T. (2002) Holographic recording in TiO2 nanoparticle-dispersed methacrylate photopolymer films. Applied Physics Letters, 81, 4121-4123.
[14] Suzuki, N. and Tomita, Y. (2006) Real-time phase-shift measurement during formation of a volume holographic grating in nanoparticle-dispersed photopolymers. Applied Physics Letters, 88, Article ID: 011105.
[15] Tomita, Y., Furushima, K., Ochi, K., Ishizu, K., Tanaka, A., Ozawa, M., Hidaka, M. and Chikama, K. (2006) Organic nanoparticle (hyperbranched polymer)-dispersed photopolymers for volume holographic storage. Applied Physics Letters, 88, Article ID: 071103.