理论数学  >> Vol. 4 No. 5 (September 2014)

量子Weyl代数的中心
The Centre of Quantum Weyl Algebras

DOI: 10.12677/PM.2014.45028, PDF, HTML, 下载: 2,018  浏览: 3,908 

作者: 柳鲁宁, 王艳华:上海财经大学数学学院,上海

关键词: Weyl代数量子Weyl代数代数的中心上同调Weyl Algebra Quantum Weyl Algebra Centre of an Algebra Cohomology

摘要: 本文给出了(−1)-量子Weyl代数k<x1,x2,...,xn>/xixj+xjxi=aij 的中心是由 x12,x22,......x2n生成的。
Abstract: This paper shows that the centre of (−1)-quantum Weyl algebra k<x1,x2,...,xn>/xixj+xjxi=aij is generated by x12,x22,......x2n .

文章引用: 柳鲁宁, 王艳华. 量子Weyl代数的中心[J]. 理论数学, 2014, 4(5): 197-200. http://dx.doi.org/10.12677/PM.2014.45028

参考文献

[1] Ceken, S., Palmieri, J., Wang, Y.H. and Zhang, J.J. (2013) The discriminant controls automorphism groups of noncom mutative algebras. arXiv:1401.0793.
[2] Ceken, S., Palmieri, J.H., Wang, Y.H. and Zhang, J.J. (2014) The discriminant criterion and automorphism groups of quantized algebras. arXiv:1402.6625.
[3] Davydov, A., Kong, L. and Runkel, I. (2013) Functoriality of the center of an algebra. arXiv:1307.5956.
[4] Davydov, A. (2010) Centre of an algebra. Advances in Mathematics, 1, 319-348.
[5] Davydov, A. (2012) Full centre of an H-module algebra. Communications in Algebra, 1, 273-290.
[6] Rosenberg, A. (1961) Blocks and centres of group algebras. Mathematische Zeitschrift, 1, 209-216.
[7] Pino, G.A. and Crow, K. (2011) The center of a Leavitt path algebra. Revista Matemática Iberoamericana, 2, 621-644.
[8] Greechie, R.J., Foulis, D. and Pulmannová, S. (1995) The center of an effect algebra. Order, 1, 91-106.
[9] Brown, J.H. (2012) The center of a Kumjian-Pask algebra. arXiv:1209.2627.