自旋Seebeck效应研究进展
Recent Progress in Spin Seebeck Effect
DOI: 10.12677/MS.2014.45026, PDF, HTML,  被引量 下载: 4,064  浏览: 15,006  国家科技经费支持
作者: 郑建森, 郑金成:厦门大学物理与机电工程学院物理系,厦门
关键词: 自旋Seebeck效应铁磁绝缘体磁振子自旋泵浦逆自旋霍尔效应Spin Seebeck Effect Ferromagnetic Insulator Magnon Spin Pumping Inverse Spin Hall Effect
摘要: 自旋Seebeck效应是自旋电子学的一个新兴领域,它指的是在特定条件下,在强自旋轨道耦合的非磁金属材料与铁磁绝缘体等材料接触时,界面出现温度梯度诱导产生的自旋流注入现象。它实现了从热流到自旋流的转换,同时这种自旋流注入可以通过非磁金属中的逆自旋霍尔效应转化为电荷电压。我们将介绍这个领域最近的实验进展,综述了自旋Seebeck效应的最新机制理论,最后作了器件应用方面的介绍,并对相关理论和实验研究进行了展望,指出要应用于未来热电转换仍是一个挑战性的任务并提出一些解决思路。
Abstract: Spin Seebeck effect, as an emerging field of spintronics, refers to the phenomenon that under spe-cific conditions, on the contact interface between a non-magnetic metal material with strong spin- orbit coupling and a ferromagnetic insulator or other candidates, there will occur a temperature gradient induced spin injection crossing the boundary. The effect implements the conversion from heat to the spin current, and also this spin current can be transformed into the charge voltage with the help of the inverse spin Hall effect in a non-magnetic metal. We will firstly survey the recent experimental progress in this area, and then review the latest theoretical progress in spin Seebeck effect mechanism. In the final, we will discuss the possibility of its device applications, and give a perspective for the relevant theoretical and experimental research, pointing out that the applica-tion in future thermoelectric conversion remains challenging and some viable solutions are pro-posed.
文章引用:郑建森, 郑金成. 自旋Seebeck效应研究进展[J]. 材料科学, 2014, 4(5): 175-190. http://dx.doi.org/10.12677/MS.2014.45026

参考文献

[1] Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., et al. (2008) Observation of the spin Seebeck effect. Nature, 455, 778-781.
[2] Saitoh, E., Ueda, M., Miyajima, H. and Tatara, G. (2006) Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Applied Physics Letters, 88, Article ID: 182509.
[3] Bosu, S., Sakuraba, Y., Uchida, K., Saito, K., Ota, T., Saitoh, E. and Takanashi, K. (2011) Spin Seebeck effect in thin films of the Heusler compound Co2 MnSi. Physical Review B, 83, Article ID: 224401.
[4] Jaworski, C.M., Yang, J., Mack, S., Awschalom, D.D., Heremans, J.P. and Myers, R.C. (2010) Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Materials, 9, 898-903.
[5] Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G.E.W., Maekawa, S. and Saitoh, E. (2010) Spin Seebeck insulator. Nature Materials, 9, 894-897.
[6] Maekawa, S. and Shinjo, T. (2002) Spin dependent transport in magnetic nanostructures. CRC Press.
[7] Brataas, A., Kent, A.D. and Ohno, H. (2012) Current-induced torques in magnetic materials. Nature Materials, 11, 372.
[8] Jungwirth, T., Wunderlich, J. and Olejnık, K. (2012) Spin Hall effect devices. Nature Materials, 11, 382.
[9] 李正中 (1985) 固体理论. 第2版, 高等教育出版社, 北京.
[10] Kouki, N. (2012) Quantum spin pumping mediated by magnon. Journal of the Physical Society of Japan, 81, Article ID: 064717.
[11] Žutić, I. and Dery, H. (2011) Taming spin currents. News & Views, Nature Materials, 10.
[12] Perez, F., Cibert, J., Vladimirova, M. and Scalbert, D. (2011) Spin waves in magnetic quantum wells with Coulomb interaction and sd exchange coupling. Physical Review B, 83, Article ID: 075311.
[13] Tserkovnyak, Y., Brataas, A. and Bauer, G.E. (2002) Enhanced gilbert damping in thin ferromagnetic films. Physical Review Letters, 88, Article ID: 117601.
[14] Costache, M.V., Sladkov, M., Watts, S.M., van der Wal, C.H. and van Wees, B.J. (2006) Electrical detection of spin pumping due to the precessing magnetization of a single ferromagnet. Physical Review Letters, 97, Article ID: 216603.
[15] Weiler, M., Althammer, M., Schreier, M., Lotze, J., Pernpeintner, M., Meyer, S., et al. (2013) Experimental test of the spin mixing interface conductivity concept. Physical Review Letters, 111, Article ID: 176601.
[16] Adachi, H. and Maekawa, S. (2013) Linear-response theory of the longitudinal spin Seebeck effect. Journal of the Korean Physical Society, 62, 1753-1758.
[17] Burrowes, C., Heinrich, B., Kardasz, B., Montoya, E.A., Girt, E., Sun, Y., et al. (2012) Enhanced spin pumping at yttrium iron garnet/Au interfaces. Applied Physics Letters, 100, Article ID: 092403.
[18] Valenzuela, S.O. and Tinkham, M. (2006) Direct electronic measurement of the spin hall effect. Nature, 442, 176-179.
[19] Uchida, K.I., Adachi, H., An, T., Ota, T., Toda, M., Hillebrands, B., et al. (2011) Long-range spin Seebeck effect and acoustic spin pumping. Nature Materials, 10, 737-741.
[20] Gilbert, T. (1955) A Lagrangian formulation of the gyromagnetic equation of the magnetization field. Physical Review, 100, 1243.
[21] Kapelrud, A. and Brataas, A. (2013) Spin pumping and enhanced gilbert damping in thin magnetic insulator films. Physical Review Letters, 111, Article ID: 097602.
[22] DeWames, R.E. and Wolfram, T. (1970) Surface dynamics of magnetic materials. Journal of Applied Physics, 41, 987.
[23] Heinrich, B., Burrowes, C., Montoya, E., Kardasz, B., Girt, E., Song, Y.Y., Sun, Y. and Wu, M. (2011) Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces. Physical Review Letters, 107, Article ID: 066604.
[24] Rezende, S.M., Rodrıguez-Suarez, R.L., Soares, M.M., Vilela-Leao, L.H., Dominguez, D.L. and Azevedo, A. (2013) Enhanced spin pumping damping in yttrium iron garnet/Pt bilayers. Applied Physics Letters, 102, Article ID: 012402.
[25] Rezende, S.M., Rodríguez-Suárez, R.L., Cunha, R.O., Rodrigues, A.R., Machado, F.L.A., Fonseca Guerra, G.A., et al. (2014) Magnon spin-current theory for the longitudinal spin-Seebeck effect. Physical Review B, 89, Article ID: 014416.
[26] Murakami, S., Nagaosa, N. and Zhang, S.C. (2003) Dissipationless quantum spin current at room temperature. Science, 301, 1348-1351.
[27] Wang, H.L., Du, C.H., Pu, Y., Adur, R., Hammel, P.C. and Yang, F.Y. (2014) Scaling of spin hall angle in 3d, 4d, and 5d metals from Y3Fe5O12/metal spin pumping. Physical Review Letters, 112, Article ID: 197201.
[28] Parkin, S.S.P. (1992) Oscillations in giant magnetoresistance and antiferromagnetic coupling in [Ni81Fe19/Cu]N multilayers. Applied Physics Letters, 60, 512-514.
[29] Reidy, S.G., Cheng, L. and Bailey, W.E. (2003) Dopants for independent control of precessional frequency and damping in Ni81Fe19 (50 nm) thin films. Applied Physics Letters, 82, 1254-1256.
[30] Ingvarsson, S., Ritchie, L., Liu, X.Y., Xiao, G., Slonczewski, J.C., Trouilloud, P.L. and Koch, R.H. (2002) Role of electron scattering in the magnetization relaxation of thin Ni81Fe19 films. Physical Review B, 66, Article ID: 214416.
[31] van Dijken, S., Jiang, X. and Parkin, S.S. (2002) Spin-dependent hot electron transport in Ni81Fe19 and Co84Fe16 films on GaAs(001). Physical Review B, 66, Article ID: 094417.
[32] Ramos, R., Kikkawa, T., Uchida, K., Adachi, H., Lucas, I., Aguirre, M.H., et al. (2013) Observation of the spin Seebeck effect in epitaxial Fe3O4 thin films. Applied Physics Letters, 102, Article ID: 072413.
[33] Nernst, W. (1887) Über die electromotorischen Kräfte, welche durch den Magnetismus in von einem Wärmestrome durchflossenen Metallplatten geweckt werden. Annalen der Physik, 267, 760-789.
[34] Xiao, J., Bauer, G.E., Uchida, K.C., Saitoh, E. and Maekawa, S. (2010) Theory of magnon-driven spin Seebeck effect. Physical Review B, 81, Article ID: 214418.
[35] Adachi, H., Ohe, J., Takahashi, S. and Maekawa, S. (2011) Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Physical Review B, 83, Article ID: 094410.
[36] Heinrich, B., Burrowes, C., Montoya, E., Kardasz, B., Girt, E., Song, Y.Y., et al. (2011) Spin pumping at the magnetic insulator (YIG)/normal metal (Au) interfaces. Physical Review Letters, 107, Article ID: 066604.
[37] 夏建白, 葛惟昆, 常凯 (2008) 半导体自旋电子学. 科学出版社, 北京.
[38] Jaworski, C.M., Yang, J., Mack, S., Awschalom, D.D., Heremans, J.P. and Myers, R.C. (2010) Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Materials, 9, 898-903.
[39] Jaworski, C.M., Myers, R.C., Johnston-Halperin, E. and Heremans, J.P. (2012) Giant spin Seebeck effect in a nonmag- netic material. Nature, 487, 210-213.
[40] Lifshitzm, E.M. and Pitaevskii, L.P. (1982) Physical Kinetics. Section 82, Pergamon, New York.
[41] Heikkilä, T.T. and Yaroslav, T. (2012) Solid-state physics: Thermal spin power without magnets. Nature, 487, 180- 181.
[42] Adachi, H., Uchida, K., Saitoh, E. and Maekawa, S. (2013) Theory of the spin Seebeck effect. Reports on Progress in Physics, 76, Article ID: 036501.
[43] Tserkovnyak, Y., Brataas, A. and Bauer, G.E.W. (2002) Spin pumping and magnetization dynamics in metallic multilayers. Physical Review B, 66, Article ID: 224403.
[44] Hoffman, S., Sato, K. and Tserkovnyak, Y. (2013) Landau-Lifshitz theory of the spin Seebeck effect. Physical Review B, 88, Article ID: 064408.
[45] Adachi, H. and Maekawa, S. (2014) Theory of the acoustic spin pumping. Solid State Communications.
[46] Kimura, T., Otani, Y., Sato, T., Takahashi, S. and Maekawa, S. (2007) Room-temperature reversible spin hall effect. Physical Review Letters, 98, Article ID: 156601.
[47] Uchida, K., Kirihara, A., Ishida, M., Takahashi, R. and Saitoh, E. (2011) Local spin-Seebeck effect enabling two-di- mensional position sensing. Japanese Journal of Applied Physics, 50, Article ID: 120211.
[48] Uchida, K., Nonaka, T., Yoshino, T., Kikkawa, T., Kikuchi, D. and Saitoh, E. (2012) Enhancement of spin-Seebeck voltage by spin-hall thermopile. Applied Physics Express, 5, Article ID: 093001.
[49] Kirihara, A., Uchida, K., Kajiwara, Y., Ishida, M., Nakamura, Y., Manako, T., Saitoh, E. and Yorozu, S. (2012) Spin- current-driven thermoelectric coating. Nature Materials, 11, 686-689.
[50] Cahaya, A.B., Tretiakov, O.A. and Bauer, G.E.W. (2014) Spin Seebeck power generators. Applied Physical Letters, 104, Article ID: 042402.