钛合金β→α相变的变体选择
Variant Selection of β→α Phase Transformation in Titanium Alloys
DOI: 10.12677/MS.2014.45028, PDF, HTML,  被引量 下载: 4,549  浏览: 18,883  国家自然科学基金支持
作者: 杨 义, 黄爱军:宝钢集团中央研究院,上海;卢亚锋, 葛 鹏, 冯 亮, 屈 磊, 周 伟:西北有色金属研究院,西安
关键词: 钛合金相变晶体学变体选择综述Titanium Alloy Phase Transformation Crystallography Variant Selection Review
摘要: β→α转变是钛合金中最基本和最重要的一种相变,两相之间存在严格的Burgers取向关系,即(0001)α//{110}β和<1120>α//<111>β,这种关系决定了在一个β晶粒内可能会出现12个α相变体。在各种类型的钛合金中,均会出现在一个β晶粒内只有少数几个取向的α相能够存在的现象,即发生变体选择,其对强度、塑性、疲劳等力学性能的负面影响逐步被关注,抑制其发生将是进一步提高钛合金性能的潜在方法之一。本文结合作者的研究工作,介绍了钛合金中β→α转变时发生变体选择的本质、成因以及对合金力学性能的影响等方面的研究现状,并分析了该研究方向目前存在的问题和今后的研究重点。
Abstract: β→α transformation is the most essential phase transition in titanium alloys. The α phase formed in the β matrix is oriented according to the so-called Burgers orientation relationship, viz. (0001)α//{110}β and <1120>α//<111>β. Because of the symmetry of the two crystals, 12 α va-riants can form in a β grain theoretically. Variant selection can take place in almost all kinds of ti-tanium alloys and decline the strength, plasticity and fatigue resistance, which have been attended by the researchers gradually. To control the occurrence of variant selection will be one of the po-tential methods to improve the properties of titanium alloys. In this paper, by integrating our re-search work, the progress in research of variant selection of β→α phase transformation in titanium alloys is briefly reviewed from aspects of the substance and the reason of variant selection, and its influence on the mechanical properties. The problems at present study and the research directions in the future are also analyzed.
文章引用:杨义, 卢亚锋, 葛鹏, 冯亮, 屈磊, 周伟, 黄爱军. 钛合金β→α相变的变体选择[J]. 材料科学, 2014, 4(5): 197-204. http://dx.doi.org/10.12677/MS.2014.45028

参考文献

[1] Burgers, W.G. (1934) On the process of transition of the cubic body centered modification into the hexagonal close packed modification of zirconium. Physica, 1, 561-586.
[2] Wang, S.C., Aindow, M. and Starink, M.J. (2003) Effect of self-accommodation on α-α boundary populations in pure titanium. Acta Materialia, 51, 2485-2503.
[3] Bohemen, S.M.C.V., Kamp, A., Petrov, R.H., Kestens, L.A.I. and Sietsma, J. (2008) Nucleation and variant selection of secondary α plates in a β Ti alloy. Acta Materialia, 56, 5907-5914.
[4] Bache, M.R., Cope, M., Davies, H.M., Evans, W.J. and Harrison, G. (1997) Dwell sensitive fatigue in a near alpha titanium alloy at ambient temperature. International Journal of Fatigue, 19, 83-88.
[5] Biavant, K.L., Pommier, S. and Prioul, C. (2002) Local texture and fatigue crack initiation in a Ti-6Al-4V titanium alloy. Fatigue and Fracture of Engineering Materials and Structures, 25, 527-545.
[6] Szczepanski, C.J., Jha, S.K., Larsen, J.M. and Jones, J.W. (2007) The role of microstructure on fatigue lifetime variability in an α+β Ti-alloy. In: Allison, J.E., Jones, J.W., Larsen, J.M. and Ritchie, R.O., Eds., Fourth In-ternational Conference on Very High Cycle Fatigue, Wiley, Ann Arbor.
[7] Furuhara, T. and Maki, T. (2001) Variant selection in heterogeneous nucleation on defects in diffusional phase transformation and precipitation. Materials Science and Engineering A, 312, 145-154.
[8] Furuhara, T., Maki, T. and Makino, T. (2001) Microstructure control by thermomechanical processing in β-Ti-15-3 alloy. Journal of Materials Processing Technology, 117, 318-323.
[9] Bache, M.R. and Evans, W.J. (2001) Impact of texture on mechanical properties in an advanced titanium alloy. Materials Science and Engineering A, 319-321, 409-414.
[10] Evans, W.J., Jones, J.P. and Whittaker, M.T. (2005) Texture effects under tension and torsion loading conditions in titanium alloys. International Journal of Fatigue, 27, 1244-1250.
[11] Gourgues-Lorenzon, A.F. (2007) Application of electron backscatter diffraction to the study of phase transformations. International Materials Reviews, 52, 65-128.
[12] Germain, L., Gey, N., Humbert, M., Bocher, P. and Jahazi, M. (2005) Analysis of sharp microtexture heterogeneities in a bimodal IMI 834 billet. Acta Materialia, 53, 3535-3543.
[13] Germain, L., Gey, N., Humbert, M., Hazotte, A., Bocher, P. and Jahazi, M. (2005) An automated method to analyze se- parately the microtextures of primary αP grains and the secondary αS inherited colonies in bimodal titanium alloys. Ma- terials Characterization, 54, 216-222.
[14] Germain, L., Gey, N., Humbert, M., Vo, P., Jahazi, M. and Bocher, P. (2008) Texture heterogeneities induced by subtransus processing of near α titanium alloys. Acta Materialia, 56, 4298-4308.
[15] Humbert, M., Germain, L., Gey, N., Bocher, P. and Jahazi, M. (2006) Study of the variant selection in sharp textured regions of bimodal IMI 834 billet. Materials Science and Engineering: A, 430, 157-164.
[16] Bhattacharyya, D., Viswanathan, G.B. and Fraser, H.L. (2007) Crystallographic and morphological re-lationships between β phase and the Widmanstätten and allotriomorphic α phase at special β grain boundaries in an α/β titanium alloy. Acta Materialia, 55, 6765-6778.
[17] Bhattacharyya, D., Viswanathan, G.B., Denkenberger, R., Furrer, D. and Fraser, H.L. (2003) The role of crystallogra- phic and geometrical relationships between α and β phases in an α/β titanium alloy. Acta Materialia, 51, 4679-4691.
[18] Stanford, N. and Bate, P.S. (2004) Crystallographic variant selection in Ti-6Al-4V. Acta Materialia, 52, 5215-5224.
[19] 杨义, 徐锋, 黄爱军, 李阁平 (2005) 全片层BT18Y钛合金在α+β相区固溶时的显微组织演化. 金属学报, 7, 713-720.
[20] Furuhara, T., Takagi, S., Watanabe, H. and Maki, T. (1996) Crystallography of grain boundary α precipitates in a β titanium alloy. Metallurgical and Materials Transactions A, 27, 1635-1646.
[21] Miyano, N., Fujiwara, H., Ameyama, K. and Weatherly, G.C. (2002) Preferred orientation relationship of intra- and in- ter-granular precipitates in titanium alloys. Materials Science and Engineering: A, 333, 85-91.
[22] Wilson, R.J., Randle, V. and Evans, W.J. (1997) The influence of the Burgers relation on crack propagation in a near α-titanium alloy. Philosophical Magazine A, 76, 471-480.
[23] Cayron, C. (2008) Importance of the α→β transformation in the variant selection mechanisms of thermomechanically processed titanium alloys. Scripta Materialia, 59, 570-573.
[24] Seward, G.G.E., Celotto, S., Prior, D.J., Wheeler, J. and Pond, R.C. (2004) In situ SEM-EBSD observations of the hcp to bcc phase transformation in commercially pure titanium. Acta Materialia, 52, 821-832.