力学研究  >> Vol. 3 No. 3 (September 2014)

有限谱有限元法求解二维不可压缩Navier-Stokes方程
A Finite Spectral Finite Element Method for Incompressible Navier-Stokes Equations

DOI: 10.12677/IJM.2014.33004, PDF, HTML, 下载: 2,269  浏览: 6,563 

作者: 王健平:北京大学工学院,力学与工程科学系,湍流与复杂系统国家重点实验室,应用物理与技术研究中心,燃烧推进中心,北京

关键词: 有限谱有限元法Navier-Stokes方程方腔流Finite Spectral Finite Element Method Navier-Stokes Equation Cavity Flow

摘要: 利用有限元的思想并结合有限谱法提出求解偏微分方程的有限谱有限元方法,在元素内部基函数使用有限谱基函数。将此方法应用于求解不可压缩Navier-Stokes方程,具体求解了二维方腔流顶盖驱动流,并与基准解对比获得了比较好的结果。
Abstract: A finite element method combined with the idea of finite spectral method was represented to solve the partial differential equations. In each element, finite spectral interpolation functions were used. The finite spectral finite element method was used to solve incompressible Navier- Stokes equations in this paper. The results of 2D-square cavity flow are presented and are in agreement with the accepted benchmark solutions.

文章引用: 王健平. 有限谱有限元法求解二维不可压缩Navier-Stokes方程[J]. 力学研究, 2014, 3(3): 33-42. http://dx.doi.org/10.12677/IJM.2014.33004

参考文献

[1] 杨曜根 (1995) 流体力学有限元. 哈尔滨工程大学出版社, 哈尔滨.
[2] Wang, J.-P. (1998) Finite spectral method based on non-periodic Fourier transform. Computers & Fluids, 27, 369-378.
[3] 王健平 (2001) 谱方法的基本问题与有限谱法. 空气动力学学报, 19, 161-171.
[4] Christies, I., Griffiths, D.F., Mitchell, A.R. and Zienkiewicz, O.C. (1976) Finite element methods for second order differential equations with significant first derivatives. International Journal for Numerical Methods in Engineering, 10, 1389-1396.
[5] Hughes, T.J.R. and Parrott, A.N. (1979) A multi-dimensional upwind scheme with no crosswind diffusion. In: Hughes, T.J.R., Ed., Finite Element Methods for Convection Dominated Flows, 34, AMD, ASME, New York, 19-35.
[6] Brooks, A.N. (1981) A Petrov-Galerkin fi-nite element formulation for convection dominated flows. PhD. Thesis, California Institute of Technology, Pasade-na.
[7] Donea, J.A. (1984) Taylor-Galerkin method for convective transport problems. International Journal for Nu-merical Methods in Engineering, 20, 109-119.
[8] Ghia, U., Ghia, K.N. and Shin, C.T. (1982) High resolution for incompressible flow using Navier-stokes equations and a multigrid method. Journal of Computational Physics, 48, 387-411.