|
[1]
|
A. Anane. Etude des valeurs propres et de la resonnance pour l’operateur p-laplacian. Comptes Rendus de l’Académie des Sciences, 1987, 305(6): 725-728.
|
|
[2]
|
W. Allegretto, Y. X. Hang. A picone identity for the p-Laplacian and applications. Nonlinear Analysis TMA, 1998, 32(7): 819-830.
|
|
[3]
|
A. Szulkin, M. Wilem. Eigenvalue problems with indefinite weights. Studia Mathematica, 1999, 135(2): 199-201.
|
|
[4]
|
M. Cuesta. Eigenvalue problems for the p-Laplacian with indefinite weights. Electronic Journal of Differential Equations, 2001, 2001(33): 1-9.
|
|
[5]
|
K. Sandeep. On the first Eigenfunction of a perturbed Hardy- Sobolev Operator. Nonlinear Differential Equations and Applications, 2003, 10(2): 223-253.
|
|
[6]
|
K. Sreenadh. On the Fučik spectrum of Hardy-Sobolev Operator. Nonlinear Analysis TMA, 2002, 51(7): 1167-1185.
|
|
[7]
|
L. Boccardo, F. Murat. Almost convergence of gradients of solutions to elliptic and parabolic equations. Nonlinear Analysis TMA, 1992, 19(6): 581-597.
|
|
[8]
|
H. Brezis, E. Lieb. A relation between point convergence of functions and convergence of functionals. Proc. AMS, 1983, 88(3): 486-490.
|
|
[9]
|
N. C. Adimurthi, M. Ramaswamy. An improved Hardy-Sobolev inequality and its applications. Proc. AMS, 2001, 130(2): 489- 505.
|
|
[10]
|
D. DeFigueredo. Lectures on the Ekeland variational principle with applications and Detours. TATA Institute, New York: Springer-Verlog, 1989.
|
|
[11]
|
A. Szulkin. Ljusternik-Schnirelmann theory on C1-manifolds. Ann. Inst. H. Poincaré, Anal. Non Linéaire, 1988, 5(2): 119-139.
|
|
[12]
|
M. Cuesta, D. Defigueredo, and J. P. Gossez. The beginning of Fučik spectrum for p-Laplacean. Journal of Differential Equations, 2001, 2001(33): 1-9.
|