The Neurophysiological Mechanism of Racial Prejudice
DOI: 10.12677/AP.2014.46095, PDF, HTML, 下载: 2,499  浏览: 8,203  国家科技经费支持
作者: 富云露, 胡金生, 王 鸽:辽宁师范大学,大连
关键词: 种族偏见神经生理机制早期认知加工Racial Prejudice Neurophysiological Mechanism Early Stages of Cognitive Processing
摘要: 早期种族偏见的ERP研究多集中在相对较晚的加工阶段,近来研究者越来越关注种族偏见相关的早期的认知加工,研究中涉及到了P100、N170、P200、SPCN等ERP指标。种族偏见相关的fMRI研究,主要涉及到了其神经机制和面孔加工、评价等过程之间的关系。种族偏见的认知加工过程并不是固定不变的,而是会受到心理因素、个体经历、群际关系、社会环境等因素的调节。未来可以结合迭代再加工模型,以杏仁核、前颞叶等重要脑区的研究为基础,深入考察种族偏见的形成和消退机制以及动机对种族偏见的调节机制。
Abstract: Early ERP researches on racial prejudice concerned later components of processing, while more attention is paid on early stages of cognitive processing (P100, N170, P200, SPCN) recently. Race-related fMRI researches mainly examine how racial bias is related to processes such as face processing, evaluation and so on. The neural processing of racial bias, which is not unalterable, is also under the influence of psychological factors, individual experience, intergroup relationship and social environment. In future, combining with iterative reprocessing model, based on neurophysiological researches on amygdala and anterior temporal lobe activity, the formation and degradation mechanism of racial prejudice and the regulatory mechanism of motivation to racial prejudice will be investigated in depth.
文章引用:富云露, 胡金生, 王鸽 (2014). 种族偏见的神经生理机制. 心理学进展, 4(6), 715-722. http://dx.doi.org/10.12677/AP.2014.46095


[1] Amodio, D. M. (2010). Coordinated roles of motivation and perception in the regulation of intergroup responses: Frontal cortical asymmetry effects on the P2 event-related potential and behavior. Journal Cognitive of Neuroscience, 22, 2609- 2617.
[2] Amodio, D. M., & Ratner, K. G. (2011). A memory systems model of implicit social cognition. Current Di-rections in Psychological Science, 20, 143-148.
[3] Avenanti, A., Sirigu, A., & Aglioti, S. M. (2010). Racial bias reduces empathic sensorimotor resonance with other-race pain. Current Biology, 20, 1018-1022.
[4] Bartholow, B. D., & Dickter, C. L. (2008). A response conflict account of the effects of stereotypes on racial categorization. Social Cognition, 26, 314-332.
[5] Brosch, T., Bar-David, E., & Phelps, E. A. (2013). Implicit race bias decreases the similarity of neural representations of black and white faces. Psychological Science, 24, 160-166.
[6] Chiu, P., Ambady, N., & Deldin, P. (2004). Contingent negative variation to emotional in- and out-group stimuli differentiates high- and low-prejudiced indi-viduals. Journal of Cognitive Neuroscience, 16, 1830-1839.
[7] Cunningham, W. A., Zelazo, P. D., Packer, D. J., & Van Bavel, J. J. (2007). The iterative reprocessing model: A multilevel framework for attitudes and evaluation. Social Cognition, 25, 736-760.
[8] Cunningham, W. A., Van Bavel, J. J., Arbuckle, N. L., Packer, D. J., & Waggoner, A. S. (2012). Rapid social perception is flexible: Approach and avoidance motivational states shape P100 responses to other-race faces. Frontiers in Human Neuroscience, 6, 140.
[9] Eimer, M., & Kiss, M. (2010). An electrophysiological measure of access to representations in visual working memory. Psychophysiology, 47, 197-200.
[10] Gallate, J., Wong, C., Ellwood, S., Chi, R., & Snyder, A. (2011). Noninvasive brain stimulation reduces prejudice scores on an implicit association test. Neuropsychology, 25, 185-192.
[11] He, Y., Johnson, M. K., Dovidio, J. F., & McCarthy, G. (2009). The relation between race-related implicit associations and scalp-recorded neural activity evoked by faces from different races. Social Neuroscience, 4, 426-442.
[12] Ibanez, A., Gleichgerrcht, E., Hurtado, E., Gonzalez, R., Haye, A., & Manes, F. F. (2010). Early neural markers of implicit attitudes: N170 modulated by intergroup and evaluative contexts in IAT. Frontiers in Human Neuroscience, 4, 188.
[13] Ito, T. A., & Urland, G. R. (2005). The influence of processing objectives on the perception of faces: An ERP study of race and gender perception. Cognitive, Affective, & Behavioral Neuroscience, 5, 21-36.
[14] Jacques, C., & Rossion, B. (2007). Electrophysiological evidence for temporal dissociation between spatial attention and sensory competition during human face processing. Cerebral Cortex, 17, 1055-1065.
[15] Knutson, K. M., DeTucci, K. A., & Grafman, J. (2011). Implicit attitudes in prosopagnosia. Neuropsychologia, 49, 1851- 1862.
[16] Lie-berman, M. D., Hariri, A., Jarcho, J. M., Eisenberger, N. I., & Bookheimer, S. Y. (2005). An fMRI investigation of race-related amygdala activity in African-American and Caucasian-American individuals. Nature Neuroscience, 8, 720- 722.
[17] Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell’Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22, 496-512.
[18] Liu, J., Harris, A., & Kanwisher, N. (2010). Perception of face parts and face configurations: An fMRI study. Journal of Cognitive Neuroscience, 22, 203-211.
[19] Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., Mervis, C. B., Mattay, V. S., Morris, C. A., & Berman, K. F. (2005). Neural correlates of genetically abnormal social cognition in William’s syndrome. Nature Neuroscience, 8, 991-993.
[20] Nichols, D. F., Betts, L. R., & Wilson, H. R. (2010). Decoding of faces and face components in face-sensitive human visual cortex. Frontiers in Psychology, 1, 1-13.
[21] Norton, M. I., Mason, M. F., Vandello, J. A., Biga, A., & Dyer, R. (2013). An fMRI investigation of racial paralysis. Social Cognitive and Affective Neuroscience, 8, 387-393.
[22] Nosek, B. A., Banaji, M., & Greenwald, A. G. (2002). Harvesting implicit group attitudes and beliefs from a demonstration web site. Group Dynamics: Theory, Research, and Practice, 6, 101-115.
[23] Ofan, R. H., Rubin, N., & Amodio, D. M. (2011). Seeing race: N170 responses to race and their relation to automatic racial attitudes and controlled processing. Journal of Cognitive Neuroscience, 23, 3153-3161.
[24] Ofan, R. H., Rubin, N., & Amodio, D. M. (2013). Situation-based social anxiety enhances the neural processing of faces: Evidence from an intergroup context. Social Cognitive and Affective Neuroscience, 9, 1055-1061.
[25] Pascoe, E. A., & Richman, L. S. (2009). Perceived discrimination and health: A meta-analytic review. Psychological Bulletin, 135, 531-554.
[26] Phelps, E. A., O’Connor, K. J., Cunningham, W. A., Funayama, E. S., Gatenby, J. C., Gore, J. C., & Banaji, M. R. (2000). Performance on indirect measures of race evaluation predicts amygdala activation. Journal of Cognitive Neuroscience, 12, 729-738.
[27] Richeson, J. A., & Trawalter, S. (2008). The threat of appearing prejudiced and race-based attentional biases. Psychological Science, 19, 98-102.
[28] Santos, A., Meyer-Lindenberg, A., & Deruelle, C. (2010). Absence of racial, but not gender, stereotyping in Williams syndrome children. Current Biology, 20, R307-R308.
[29] Sawyer, P. J., Major, B., Casad, B. J., Townsend, S. S. M., & Mendes, W. B. (2012). Discrimination and the stress response: Psychological and physiological consequences of anticipating prejudice in interethnic interactions. American Journal of Public Health, 102, 1020-1026.
[30] Sessa, P., Tomelleri, S., Luria, R., Castelli, L., Reynolds, M., & Dell’Acqua, R. (2012). Look out for strangers! Sustained neural ac-tivity during visual working memory maintenance of other-race faces is modulated by implicit racial prejudice. Social Cognitive and Affective Neuroscience, 7, 314-321.
[31] Senholzi, K. B., & Ito, T. (2013). Structural face encoding: How task affects the N170’s sensitivity to race. Social Cognitive and Affective Neuroscience, 8, 937-942.
[32] Shkurko, A. V. (2013). Is social categorization based on relational ingroup/outgroup opposition? A meta-analysis. Social Cognitive and Affective Neuroscience, 8, 870-877.
[33] Telzer, E. H., Humphreys, K. L., Shapiro, M., & Tottenham, N. (2013). Amygdala sensitivity to race is not present in childhood but emerges over adolescence. Journal of Cognitive Neuroscience, 25, 234-244.
[34] Walker, P. M., Silvert, L., Hewstone, M., & Nobre, A. C. (2008). Social contact and other-race face processing in the human brain. Social Cognitive and Affective Neuroscience, 3, 16-25.
[35] Van Bavel, J. J., Packer, D. J., & Cunningham, W. A. (2011). Modulation of the fusiform face area follow minimal exposure to motivationally relevant faces: Evidence of in-group enhancement. Journal of Cognitive Neuroscience, 23, 3343-3354.