计算机科学与应用  >> Vol. 4 No. 11 (November 2014)

高速TCP在OBS网络上的性能研究
Performance Evaluation of High Speed TCP Variants over Optical Burst Switching Networks

DOI: 10.12677/CSA.2014.411034, PDF, HTML, 下载: 2,028  浏览: 4,377  科研立项经费支持

作者: 李在伟, 王 衍:浙江财经大学信息学院,杭州

关键词: 传输控制协议光突发交换网络吞吐量高速传输控制协议TCP Optical Burst Switching Throughput High-Speed TCP

摘要: 随着互联网的快速发展,高速TCP在光突发交换网络的性能表现引起了人们的极大兴趣。在光突发交换网络的突发包的大小,突发包的组装时间和波长数对高速TCP的性能影响的研究上,人们仅限于单个高速TCP的性能研究。本文通过仿真,系统的研究了多个高速TCP在光突发交换网络的性能体现。我们研究发现,当突发包的大小和突发包组包时间在一定值域时,随着汇聚包的大小和时间的增加,高速TCP的吞吐量相应增加,当达到一定值时,吞吐量反而减少;而高速TCP的吞吐量都随着波长数量的增加而增加。
Abstract: With the rapid development of Internet, people have strong interest in studying the performance of high speed TCP variants in optical burst switching networks. But they are only restricted in single high speed TCP’s performance research about the influence of the burst’s size, burst’s assembly time and wavelength numbers. This article systematically research many high speed TCP variants in optical burst switching through the simulation. We show that the high-speed TCP variants have better performance than regular TCP and the throughput has rapid increase when we increase burst’s size, assembly time and wavelength numbers of burst. When reaching at a value, we also find that the throughput decreases with increasing burst’s size and assembly time.

文章引用: 李在伟, 王衍. 高速TCP在OBS网络上的性能研究[J]. 计算机科学与应用, 2014, 4(11): 249-254. http://dx.doi.org/10.12677/CSA.2014.411034

参考文献

[1] Floyd, S. (2003) High speed TCP for large congestion windows. IETF RFC3649.
[2] Xu, L., Harfoush, K. and Rhee, I. (2004) Binary increase congestion control for long-distance networks. Proceedings of the IEEE INFOCOM, Hong Kong.
[3] Ltith, D.J. and Shorten, R.N. (2004) H-TCP protocol for high-speed long distance networks. The 2th Workshop Protocols Fast Long Distance Networks, Argonne.
[4] Kelly, T. (2003) Scalable TCP: Improving perfor-mance in high-speed wide area networks. Computer Communication Reviews, 33, 83-91.
[5] Wang, J.Y. and Wen, J.T. (2013) CUBIC-fit: A high performance and TCP CUBIC friendly congestion control algorithm. IEEE Communications Letters, 17, 1664-1667.
[6] Šošić, M. and Stojanović, V. (2013) Resolving poor TCP performance on high-speed long distance links—Overview and comparison of BIC, CUBIC and Hybla. IEEE 11th International Symposium on Intelligent Systems and Informatics, Subotica, September 26-28.
[7] Yue, Z.J., Zhang, X.D. and Ren, Y.M. (2012) The performance evaluation and comparison of TCP-based high-speed transport protocols. IEEE 3rd International Conference on Software Engineering and Service Science, 509-512.
[8] Ramaswami, R. (1998) Optical networks: A practical perspective. Morgan Kaufmann Publishers, Inc., San Francisco.
[9] Qiao, C. and Yoo, M. (1999) Optical burst switching (OBS)—A new paradigm for an optical Internet. Journal of High Speed Networks, 8, 69-84.
[10] Turner, J. (1999) Terabit burst switching. Journal of High Speed Networks, 8, 3-16.
[11] Wang, Y. and Cao, X.J. (2012) Multi-granular optical switching: A classified overview for the past and future. IEEE Communications Surveys & Tutorials, 14, 698-713.
[12] Xiong, Y., Vandenhoute, M. and Cankaya, H. (2000) Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications, 18, 1838-1851.
[13] Yu, X., Qiao, C. and Liu, Y. (2002) TCP implement and false time out detection in OBS networks. Proceedings of the IEEE International Conference on Computer Communication, 774-784.
[14] Shihada, B. and Ho, P.-H. (2008) Transport control protocol (TCP) in optical burst switched networks: Issues, solutions, and challenges. IEEE Communications Surveys and Tutorials, 10, 70-86.
[15] Liu, L., Hong, X.B., Wu, J., Yin, Y.W., Cai, S.R. and Lin, J.T. (2009) Experimental comparison of high-speed transmission control protocols on a traffic-driven labeled optical burst switching network test bed for grid applications. Journal of Optical Networking, 8, 491-503.
[16] Shihada, et al. (2013) Fast TCP over optical burst switched networks: Modeling and stability analysis. Optical Switching and Networking, 10, 107-118.