东洋界特有种——中缅树鼩生理生态学研究进展及其展望
Oriental Endemic Species—Progress and Prospect of Studies on Physiological Ecology in Tree Shrews, Tupaia belangeri
DOI: 10.12677/BP.2014.44011, PDF, HTML, 下载: 2,723  浏览: 10,813  国家自然科学基金支持
作者: 高文荣:云南师范大学能源与环境科学学院,昆明 ;朱万龙:云南省高校西南山地生态系统动植物生态适应进化及保护重点实验室,云南师范大学生命科学学院,昆明
关键词: 东洋界中缅树鼩产热特征能量代谢Oriental Realm Tupaia belangeri Thermal Characteristics Energy Metabolism
摘要: 中缅树鼩为东洋界特有的小型哺乳动物,具有特殊的进化地位,在生物医学上被广泛采用为实验动物。本论文以中缅树鼩(Tupaia belangeri)为研究对象,从个体、组织及分子水平对中缅树鼩的产热特征及能量代谢进行了系统的研究。得到以下成果:首次从生理生态学角度支持了树鼩由南向北扩散的“岛屿起源”假说,温度是限制中缅树鼩继续向北扩散的主要因素;中缅树鼩的产热特征及能量代谢具有季节性和日节律变化,温度和光周期对产热特征及能量代谢具有显著影响。研究成果为东洋界小型哺乳动物的生理生态适应模式与对策提供了理论依据。
Abstract: Tree shrew (Tupaia belangeri) is a small mammal in Oriental endemic with special evolution status, and it has been widely used in biomedicine as experimental animal. In this paper, we used T. belan-geri as the research object, thermogenesis and energy metabolism were measured in system of T. belangeri from individual, organization and molecular levels. The following results were obtained: for the first time to support the “island origin” hypothesis that T. belangeri diffused from south to north from the physiological ecology angle, and temperature is the major factor which limited T. be-langeri continued northward diffusion; thermal characteristics and energy metabolism in T. belan-geri with seasonal and diurnal variation; temperature and photoperiod had significant effects on its thermal characteristics and energy metabolism. Research results provide a theoretical basis of phy-siological ecological adaptation model and countermeasures for Oriental small mammals.
文章引用:高文荣, 朱万龙. 东洋界特有种——中缅树鼩生理生态学研究进展及其展望[J]. 生物过程, 2014, 4(4): 82-89. http://dx.doi.org/10.12677/BP.2014.44011

参考文献

[1] Gao, W.R., Zhu, W.L., Zhang, D., Sun, S.R. and Wang, Z.K. (2014) Effects of fasting and re-feeding on energy meta-bolism and thermogenesis in the tree shrew (Tupaia belangeri). Animal Biology, 64, 31-47.
[2] 高文荣, 朱万龙, 孟丽华, 曹能, 余婷婷, 王政昆 (2013) 光周期和高脂食物对雌性高山姬鼠能量代谢和产热的影响. 生态学报, 33, 5696-5703.
[3] Trier, T.M. (1996) Diet-induced thermogenesis in the prairie vole, Microtus ochrogaster. Physiological Zoology, 69, 1456-1468.
[4] Ahima, R.S. and Flier, J.S. (2000) Leptin. Annual Review of Physiology, 62, 413-437.
[5] Speakman, J.R. (2008) The physiological cost of reproduction in small mammals. Philosophical Trans-actions of the Royal Society, 363, 375-398.
[6] Himms-Hagen, J. (1990) Brown adipose tissue thermogenesis: Inter-disciplinary studies. FASEB, 4, 2890-2898.
[7] Cannon, B. and Nedergaard, J. (2004) Brown adipose tissue: Function and physilogical significance. Physiological Reviews, 84, 277-359.
[8] 王应祥, 李崇云, 马世来 (1991) 树鼩的分类与生态. 树鼩生物学. 云南科技出版社, 昆明, 21-70.
[9] Speakman, J.R. and Król, E. (2006) Limits to sustained energy intake IX: A review of hypotheses. Journal of Comparative Physiology B, 175, 375-394.
[10] Corp, N., Gorman, M.L. and Speakman, J.R. (1999) Daily energy expenditure of free-living male wood mice in different habitats and seasons. Functional Ecology, 13, 1365-2435.
[11] Naya, D.E., Ebensperger, L.A., Sabat, P. and Bozinovic, F. (2008) Digestive and metabolic flexibility allows female degus to cope with lactation costs. Physiological and Biochemical Zoology, 81, 186-194.
[12] Naya, D.E. and Bozinovic, F. (2004) Digestive phenotypic flexibility in post-metamorphic amphibians: Studies on a model organism. Biological Research, 37, 365-370.
[13] Corp, N., Gorman, M.L. and Speakman, J.R. (1997) Apparent absorption efficiency and gut morphometry of wood mice, Apodemus sylvaticus, from two distinct populations with different diets. Physiological Zoology, 70, 610-614.
[14] 李晓婷, 朱万龙, 刘鑫, 刘春燕, 王政昆 (2011) 中缅树鼩能量代谢的季节变化. 兽类学报, 3, 291-298.
[15] Zhu, W.L., Zhang, H. and Wang, Z.K. (2012) Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri) the roles of photoperiod and cold. Journal of Thermal Biology, 37, 479-484.
[16] Duarte, L.C., Vaanholt, L.M., Sinclair, R.E., Gamo, Y. and Speakman, J.R. (2010) Limits to sustained energy intake XII: Is the poor relation between resting metabolic rate and reproductive performance because resting metabolism is not a repeatable trait. The Journal of Experimental Biology, 213, 278-287.
[17] 蔡金红, 朱万龙, 谢静, 贾婷, 王睿, 练硝, 王政昆 (2010) 中缅树鼩消化道长度和重量变化. 动物学杂志, 1, 140-144.
[18] McNab, B.K. (2002) The physiological ecology of vertebrates: A view from energetics. Cornell University Press, Ithaca, London.
[19] Gebczynski, A.G. (2005) Daily variation of thermoregulatory costs in laboratory mice selected for high and low basal metabolic rate. Journal of Thermal Biology, 30, 187-193.
[20] Benstaali, C., Mailloux, A., Bogdan, A., Auzeby, A. and Touitou, Y. (2001) Circadian rhythms of body temperature and motor activity in rodents. Their relationships with the light-dark cycle. Life Sciences, 68, 2645-2656.
[21] Gebczynski, A.G. and Taylor, J.R.E. (2004) Daily variation of body temperature, locomotor activity and maximum nonshivering thermogenesis in two species of small rodents. Journal of Thermal Biology, 29, 123-131.
[22] Refinetti, R. (1994) Contribution of locomotor activity to the generation of the daily rhythm of body temperature in golden hamster. Physiology & Behavior, 56, 829-831.
[23] Refinetti, R. and Menaker, M. (1992) The circadian rhythm of body temperature. Physiology & Behavior, 51, 613-637.
[24] 黄春梅, 胡黎娅, 杨盛昌, 朱万龙, 李晓婷, 蔡金红, 王政昆 (2012) 中缅树鼩体温、代谢率和蒸发失水日节律. 动物学杂志, 2, 127-135.
[25] Zhang, L., Zhu, W.L., Yang, F. and Wang, Z.K. (2014) Influence of photoperiod on cold-adapted thermogenesis and endocrine aspects in the tree shrew (Tupaia belangeri). Animal Biology, 64, 1-17.
[26] Zhang, L., Zhu, W.L. and Wang, Z.K. (2012) Role of photoperiod on hormone concentrations and adaptive capacity in tree shrews, Tupaia belangeri. Comparative Biochemistry and Physiology, 163, 253-259.
[27] Zhang, L., Zhang, H., Zhu, W.L., Li, X.S. and Wang, Z.K. (2012) Energy metabolism, thermogenesis and body mass regulation in tree shrew (Tupaia belangeri) during subsequent cold and warm acclimation. Comparative Biochemistry and Physiology, 162, 437-442.
[28] Zhu, W.L., Jia, T., Huang, C.M., Zhang, L. and Wang, Z.K. (2012) Changes of energy metabolism, thermogenesis and body mass in the tree shrew (Tupaia belangeri chinensis) during cold exposure. Italian Journal of Zoology, 79, 175- 181.
[29] Zhang, L., Wang, R., Zhu, W.L. and Wang, Z.K. (2011) Adaptive thermogenesis of the liver in tree shrew (Tupaia belangeri) during cold acclimation. Animal Biology, 61, 385-401.
[30] Helamaier, G. and Lynch, G.R. (1986) Pineal involvement in thermoregulation and acclimatization. Pineal Research Reviews, 4, 97-139.
[31] Banin, D., Haim, A. and Arad, Z. (1994) Metabolism and thermoregulation in the Levant vole Microtus guentheri: The role of photoperiodicity. Journal of Thermal Biology, 19, 22-62.
[32] 谢静, 王政昆, 张武先, 朱莉萍 (2008) 冷暴露对中缅树鼩褐色脂肪组织中解偶联蛋白1含量的影响. 动物学杂志, 4, 34-40.
[33] 谢静, 王颖, 练销, 王政昆 (2008) 冷暴露对中缅树鼩肝脏、膈肌和心肌线粒体呼吸的影响. 兽类学报, 2, 157-164.
[34] 王政昆, 孙儒泳, 李庆芬 (1994) 中缅树鼩静止代谢率的研究. 北京师范大学学报: 自然科学版, 3, 408-414.
[35] Zhu, W.L., Xie, J., Lian, X. and Wang, Z.K. (2010) Thermogenic characteristics and evaporative water loss in the tree shrew (Tupaia belangeri). Journal of Thermal Biology, 6, 290-294.
[36] Han, K.H., Sheldon, F.H. and Stuebing, R.B. (2000) Interspecific relationships and biogeography of some Bornean tree shrews (Tupaiidae Tupaia), based on DNA hybridization and morphometric comparisons. Biological Journal of the Linnean Society, 70, 1-14.
[37] Mein, P. and Ginsburg, L. (1997) Les mammifères du gisement miocène inférieur de Li Mae Long, Thailande: Systématique, biostratigraphieet paléoenvironnement. Geodiversitas, 19, 783-844.
[38] Chopra, S.R.K. and Vasishat, R.N. (1979) Sivalik fossil tree shrew from Haritalyangsr, India. Nature, 281, 213-214.
[39] Chopra, S.R.K., Kaul, S. and Vasishat, R.N. (1989) Miocene tree shrews from the Indian Sivaliks. Nature, 277, 203- 209.
[40] Jacobs, L.L. (1980) Siwalik fosslik tree shrews. In: Luckett, W.P. Ed., Comparative Biology and Evolutionary Relationships of Tree Shrews, Plenum Press, New York and London, 205-216.
[41] Ni, X.J. and Qiu, Z.D. (2002) The micromammalian fauna from the Leilao, Yuanmou hominoid locality: Implications for biochronology and paleoecology. Journal of Human Evolution, 42, 535-546.
[42] Tong, Y. (1988) Fossil tree shrews from the Eocene Hetaoyuan formation of Xichuan, Henan. Vertebrata PalAsiatica, 26, 214-220.
[43] Ducrocq, S., BuVetaut, E., BuVetaut-Tong, H., Jaeger, J.J., Jongkanjanasoontorn, Y. and Suteethorn, V. (1992) First fossil Xying lemur: A dermopteran from the late Eocene of Thailand. Palaeontology, 35, 373-380.
[44] Ketola, T. and Kotiaho, J.S. (2009) Inbreeding, energy use and condition. Journal of Evolutionary Biology, 22, 770-781.
[45] Hulbert, A.J., Pamplona, R., Buffenstein, R. and Buttemer, W.A. (2007) Life and death: Metabolic rate, membrane composition, and life span of animals. Physiological Reviews, 87, 1175-1213.
[46] Król, E., Murphy, M. and Speakman, J.R. (2007) Limits to sustained energy intake. X. Effects of fur removal on reproductive performance in laboratory mice. The Journal of Experimental Biology, 210, 4233-4243.
[47] Wu, S.H., Zhang, L.N., Speakman, J.R. and Wang, D.H. (2009) Limits to sustained energy intake. XI. A test of the heat dissipation limitation hypothesis in lactating Brandt’s voles (Lasiopodomys brandtii). Journal of Experimental Biology, 212, 3455-3465.
[48] Cypess, A.M., Lehman, S., Williams, G., Tal, I., Rodman, D., Goldfine, A.B., Kuo, F.C., Palmer, E.L., Tseng, Y.H., Doria, A., Kolodny, G.M. and Kahn, C.R. (2009) Identification and importance of brown adipose tissue in adult humans. The New England Journal of Medicine, 360, 1518-1525.
[49] van Marken Lichtenbelt, W.D., Vanhommerig, J. W., Smulders, N.M., Drossaerts, J.M.A.F.L., Kemerink, G.J., Bouvy, N.D., Schrauwen, P. and Teule, G.J.J. (2009) Cold-activated brown adipose tissue in healthy men. The New England Journal of Medicine, 360, 1500-1508.
[50] Virtanen, K.A., Lidell, M.E., Orava, J., Heglind, M., Westergren, R., Niemi, T., Taittonen, M., Laine, J., Savisto, N.J., Enerbäck, S. and Nuutila, P. (2009) Functional brown adipose tissue in healthy adults. The New England Journal of Medicine, 360, 1509-1517.
[51] Seale, P. and Lazar, M.A. (2009) Brown fat in humans: Turning up the heat on obesity. Diabetes, 58, 1482-1484.
[52] Celi, F.S. (2009) Brown adipose tissue—When it pays to be inefficient. The New England Journal of Medicine, 360, 1553-1556.
[53] Iain, T.H., Yong, A., Thorn, N., Ganatra, R., Perkins, A.C. and Symonds, M.E. (2009) Brown adipose tissue and seasonal variation in humans. Diabetes, 58, 2583-2587.
[54] Cinti, S. (2009) Transdifferentiation properties of adipocytes in the adipose organ. American Journal of Physiology, 297, E977-E986.
[55] Tseng, Y.H., Kokkotou, E., Schulz, T.J., Huang, T.L., Winnay, J.N., Taniguchi, C.M., Tran, T.T., Suzuki, R., Espinoza, D.O., Yamamoto, Y., Ahrens, M.J., Dudley, T., Norris, A.W., Kulkarni, R.N. and Kahn, C.R. (2008) New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature, 454, 1000-1006.
[56] Lazar, M.A. (2008) How now, brown fat? Science, 321, 1048-1049.
[57] Schulz, T.J. and Tseng, Y.H. (2009) Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine & Growth Factor Reviews, 20, 523-531.
[58] Frühbeck, G., Sesma, P. and Burrel, M.A. (2009) PRDM16: The interconvertible adipo-myocyte switch. Cell Biology, 19, 141-146.