基因组定向编辑技术——CRISPR/Cas9的研究进展
Advances in Genome Directional Editing Technologies of CRISPR/Cas9
DOI: 10.12677/HJAS.2014.46022, PDF, HTML, 下载: 4,270  浏览: 20,152 
作者: 姚 瑶, 钱雪艳, 郭东全:吉林省农业科学院农业生物技术研究所,长春
关键词: CRISPR/Cas系统Cas9蛋白基因定点修饰CRISPR/Cas System Cas9 Protein Targeted Genome Modification
摘要: CRISPR/Cas系统(Clustered regularly interspaced short palindromic repeats/CRISPR-associated)是广泛存在于细菌及古生菌中的,由细菌体长期进化而形成的,能够降解入侵病毒或噬菌体DNA的适应性免疫系统。由于CRISPR/Cas的Ⅱ型系统比较简单,因此成为目前应用最为广泛的方法。本文主要介绍了CRISPR/Cas系统的基本结构、作用原理、技术特点、研究进展以及该技术可能的应用前景等方面内容。
Abstract: CRISPR/Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated) refers to an adaptive immune system that is gained from the long-term evolution of the organism which is widespread in bacteria and archaea. The system is able to degrade the invading virus or phage DNA. TypeⅡ of CRISPR/Cas system has become the most popular method due to its simplicity. This paper summarizes the basic structure, principle, technical characteristics and the progress of CRISPR/Cas, as well as the application prospect of the technology.
文章引用:姚瑶, 钱雪艳, 郭东全. 基因组定向编辑技术——CRISPR/Cas9的研究进展[J]. 农业科学, 2014, 4(6): 142-150. http://dx.doi.org/10.12677/HJAS.2014.46022

参考文献

[1] 王根平, 杜文明, 夏兰琴 (2014) 植物安全转基因技术研究现状与展望. 中国农业科学, 5, 823-843.
[2] Kim, H. and Kim, J. (2014) A guide to genome engineering with programmable nucleases. Nature Reviews Genetics, 15, 321-334.
[3] Fichtner, F., Castellanos, R.U. and Ulker, B. (2014) Precision genetic modifications: A new era in mo-lecular biology and crop improvement. Planta, 239, 921-939.
[4] 刘忠松 (2014) 作物遗传育种研究进展Ⅲ.作物基因工程与基因组编辑. 作物研究, 3, 332-337.
[5] Lei, S.Q., Larson, M.H., Luke, A., et al. (2013) Repurposing CRISPR as an RNA guided platform for sequence-spe- cific control of gene expression. Cell, 152, 1173-1183.
[6] Ishino, Y., Shinagawa, H., Makino, K., et al. (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, 169, 5429-5433.
[7] Jansen, R., Embden, J.D., Gaastra, W., et al. (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, 43, 1565-1575.
[8] Wei, C.X., Liu, J.Y., Yu, Z.S., et al. (2013) TALEN or Cas9-rapid, efficient and specific choices for genome modifications. Journal of Genetics and Genomics, 40, 281-289.
[9] 黄建军, 胡福泉 (2002) 细菌对噬菌体感染的抵抗. 免疫学杂志, 3, 135-145.
[10] Pourcel, C., Salvignol, G. and Vergnaud, G. (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology, 151, 653- 663.
[11] Bolotin, A., Quinquis, B., Sorokin, A. and Ehrlich, S.D. (2005) Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, 151, 2551-2561.
[12] Mojica, F.J., Diez-Villasenor, C., Garcia-Martinez, J. and Soria, E. (2005) Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. Journal of Molecular Evolution, 60, 174-182.
[13] Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) Aprogramma-ble dual-RNA- guided DNA endonuclease in adaptive bacterial immunity. Science, 337, 816-821.
[14] Godde, J.S. and Bickerton, A. (2006) The repetitive DNA elements called CRISPRs and their associated genes, evidence of horizontal transfer among prokaryotes. Journal of Molecular Evolution, 62, 718-729.
[15] Grissa, I., Vergnaud, G. and Pourcel, C. (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 8, 172.
[16] Karginov, F.V. and Hannon, G.J. (2011) The CRISPR system, small RNA-guided defense in bacteria and archaea. Molecular Cell, 37, 7-19.
[17] 李铁民, 杜波 (2011) CRISPR-Cas系统与细菌和噬菌体的共进化. 遗传, 3, 213-218.
[18] Sorek, R., Kunin, V. and Hugenholtz, P. (2008) CRISPR, a widespread system that provides acquired resistance against phages in bacteria and archaea. Nature Reviews Microbiology, 6, 181-186.
[19] Shan, Q., Wang, Y., Li, J., Zhang, Y., Chen, K., Liang, Z., et al. (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nature Biotechnology, 31, 686-688.
[20] Bikard, D. and Marraffini, L.A. (2012) Innate and adaptive immunity in bacteria, mechanisms of programmed genetic variation to fight bacteriophages. Current Opinion in Immunology, 24, 15-20.
[21] Wiedenheft, B., Stemberg, S.H. and Doundna, J.A. (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature, 482, 331-338.
[22] Shah, S.A. and Garrett, R.A. (2011) CRISPR/Cas and Cmr modules, mobility and evolution of adaptive immune systems. Research in Microbiology, 162, 27-38.
[23] Makarova, K.S., Haft, D.H., Barrangou, R., Brouns, S.J., Charpentier, E., Horvath, P., et al. (2011) Evolution and classification of the CRISPR-Cas systems. Nature Reviews Microbiology, 9, 467-477.
[24] Garneau, J.E., Dupuis, M., Villion, M., Romero, D.A., Barrangou, R., Boyaval, P., et al. (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 468, 67-71.
[25] Mali, P., Yang, L., Esvelt, K.M., Aach, J., Guell, M., Dicarlo, J.E., et al. (2013) RNA-guided human genome engineering via Cas9. Science, 339, 823- 826.
[26] Qi, L.S., Larson, M.H., Gilbert, L.A., Doudna, J.A., Weissman, J.S., Arkin, A.P. and Lim, W.A. (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell, 152, 1173-1183.
[27] Westra, E.R., Van Erp, P.B., Kunne, T., Wong, S.P., Staals, R.H., Seegers, C.L., et al. (2012) CRISPR immunity relies on the consecutive binding and degradation of engatively supercoiled invader DNA by Cascade and Cas3. Molecular Cell, 46, 595-605.
[28] Richter, H., Randau, L. and Plagens, A. (2013) Exploiting CRISPR/Cas, interference mechanisms and applications. International Journal of Molecular Sciences, 14, 14518-14531.
[29] Sampson, T.R., Sawj, S.D., Llewellyn, A.C., Tzeng, Y.L. and Weiss, D.S. (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature, 497, 254-257.
[30] Jinek, M., East, A., Cheng, A., Lin, S., Ma, E. and Doudna, J. (2013) RNA-programmed genome editing in human cells. Elife, 2, Article ID: e00471.
[31] Cheng, A.W., Wang, H., Yang, H., Shi, L., Katz, Y., Theunissen, T.W., et al. (2013) Multiplexed activation of endogenous genes by CRISPR on an RNA-guided transcriptional activator system. Cell Research, 23, 1163-1171.
[32] Barrangou, R. (2012) RNA-mediated programmable DNA cleavage. Nature Biotechnology, 30, 836-838.
[33] Miao, J., Guo, D., Zhang, J., Huang, Q., Qin, G., Zhang, X., et al. (2013) Targeted mutagenesis in rice using CRISPR-Cas system. Cell Research, 23, 1233-1236.
[34] Hsu, P.D., Scott, D.A., Weinstein, J.A., Ran, F.A., Konermann, S., Agarwala, V., et al. (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 31, 827-832.
[35] Ren, X.J., Yang, Z.H., Xu, J., Sun, J., Mao, D.C., Hu, Y.H., et al. (2014) Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Reports, 9, 1151-1162.
[36] Hwang, W.Y., Fu, Y., Reyon, D., Maeder, M.L., Tsai, S.Q., Sander, J.D., et al. (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nature Biotechnology, 31, 227-229.
[37] 李明辉 (2014) 罗非鱼基因敲除技术的建立及其在性别决定与分化研究中的应用. 博士论文, 西南大学, 重庆.
[38] Li, D., Qiu, Z., Shao, Y., Chen, Y., Guan, Y., Liu, M., et al. (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nature Biotechnology, 8, 681-683.
[39] Wang, H.Y., Yang, H., Shivalila, C.S., Dawlaty, M.M., Cheng, A.W., Zhang, F. and Jaenisch, R. (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell, 153, 910- 918.
[40] Li, W., Teng, F., Li, T. and Zhou, Q. (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nature Biotechnology, 31, 684-686.
[41] 陈永昌, 牛昱宇, 季维智 (2014) 通过CRISPR/Cas9和TALENs介导的基因打靶技术获得基因修饰的猴模型. 中国细胞生物学学报, 5, 557-560.
[42] Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., et al. (2013) Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819-823.
[43] 梁振伟, 饶书权, 沈岩, 许琪 (2014) 通过CRISPR/Cas9系统敲除人源PDE10A基因. 基础医学与临床, 4, 439- 443.
[44] Mali, P., Yang, L.H., Esvelt, K.M., Aach, J., Guell, M., DiCarlo, J.E., et al. (2013) RNA-guidedhuman genome engineering via Cas9. Science, 339, 823-826.
[45] 蔡刘体, 陈兴江, 刘艳霞, 石俊雄 (2014) 噬菌体治疗中细菌对噬菌体的抗性. 生物技术通报, 7, 33-36.
[46] 崔玉军 (2008) 鼠疫耶尔森氏菌基因组多态性数据库及鉴定溯源系统的研究. 博士论文, 中国人民解放军军事医学科学院, 北京.
[47] 赵飞 (2013) 鸡肉中沙门菌的定量检测及分离株CR1SPRS分子亚分型分析. 硕士论文, 扬州大学, 扬州.
[48] 狄慧玲, 闫鹤, 石磊 (2014) 食源性单核细胞增生李斯特菌CRISPR结构的研究. 现代食品科技, 8, 64-69.
[49] Nekrasov, V., Staskawicz, B., Weigel, D., Jones, J.D. and Kamoun, S. (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nature Biotechnology, 31, 691-693.
[50] Li, J.F., Norville, J.E., Aach, J., McCormack, M., Zhang, D., Bush, J., et al. (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nature Biotechnology, 31, 688-691.
[51] Feng, Z.Y. and Zhang, B.T. (2013) Efficient genome editing in plants using a CRISPR/Cas system. Cell Reseach, 23, 1229-1232.
[52] Grissa, I., Vergnaud, G. and Pourcel, C. (2007) The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 8, 172.
[53] Xie, S.S., Shen, B., Zhang, C.B., Huang, X.X. and Zhang, Y.L. (2014) sgRNAcas9: A software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS ONE, 9, Article ID: e100448.
[54] Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S. and Vale, R.D. (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell, 158, 635-646.
[55] Gilbert, L.A., Horlbeck, M.A., Adamson, B., Villalta, J.E., Chen, Y.W., Whitehead, E.H., et al. (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell, 159, 647-661.