介孔TiO2催化臭氧氧化去除废水中氯酚的研究
Study on Degradation of Trichlorophenol by Meso-Porous TiO2 Catalyzed Ozonation
DOI: 10.12677/MS.2015.51002, PDF, HTML, XML, 下载: 2,805  浏览: 9,627  科研立项经费支持
作者: 刘智武, 蒙 媛, 刘建锋:金华职业技术学院,金华
关键词: 催化臭氧化介孔TiO2臭氧三氯酚Catalytic Ozonation Meso-Porous TiO2 Ozone Trichlorophenol
摘要: 以市场P25为前驱体用水热法制备出TiO2介孔材料,催化剂的表征采用透射电子显微镜、比表面分析仪以及X射线衍射技术,通过表征结果发现介孔TiO2的形貌、晶相比例受反应水热温度及煅烧温度控制,且随着两者温度的升高,介孔TiO2的比表面积及孔径会逐渐减小,晶相由锐钛矿逐渐转向金红石相。用制备的介孔TiO2催化材料联合臭氧降解2,4,6-三氯酚水溶液来评价TiO2介孔纳米材料臭氧催化性能,研究结果表明:介孔TiO2协同臭氧降解的2,4,6-三氯酚的效率较单独臭氧及市场P25都有明显的改善,且TiO2纳米管协同臭氧降解氯酚效率最高,另外,TiO2催化剂中金红石相越多,其臭氧催化性能越好。
Abstract: TiO2 Meso-porous material was prepared from Degussa P25 by using hydrothermal method after annealing in different temperature. Catalyst samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and Brunauer-Emmett-Teller (BET) analysis. Results indicate that various morphology (nanotube, nanorod, nanopolyhedron and nanoparticles) and crystallite phases (ratios of anatase and rutile) were synthesized by varying hydrothermal temperature and annealing temperature. SBET and Pore size decreases with increased hydrothermal temperature and sintering temperature. Calcination temperature plays an important role in crystal composition of the catalysts. The samples were used as catalysts for degradation of 2,4,6- trichlorophenol (2,4,6-TCP) by ozone. Removal efficiency of 2,4,6-TCP was significantly promoted in the presence of catalyst compared with that of ozone alone. The nanotube TiO2 showed the best activity, and the higher rutile phase ratios showed higher catalytic ozonation.
文章引用:刘智武, 蒙媛, 刘建锋. 介孔TiO2催化臭氧氧化去除废水中氯酚的研究[J]. 材料科学, 2015, 5(1): 9-14. http://dx.doi.org/10.12677/MS.2015.51002

参考文献

[1] 王晓东, 张光辉, 顾平, 等 (2008) 水体中氯酚类污染物的生物降解性研究进展. 中国给水排水, 16, 18-21.
[2] 彭云霞, 何仕均, 龚文琪, 等 (2013) 氯酚溶液的γ辐照还原降解研究. 环境科学, 4, 1411-1415.
[3] 江传春, 肖蓉蓉, 杨平 (2011) 高级氧化技术在水处理中的研究进展. 水处理技术, 7, 12-16.
[4] 姚立忱, 王艺林, 刘伟, 等 (2013) 臭氧催化氧化技术深度处理煤气废水的实验研究. 工业水处理, 5, 50-52.
[5] 尹萌萌, 陈瑞芳, 宋英豪, 等 (2014) 催化臭氧化处理难降解工业废水工艺的优化研究. 中国给水排水, 11, 90-94.
[6] Beltran, F.J., Rivas, F.J. and Montero-de-Espinosa, R. (2002) Catalytic ozonation of oxalic acid in an aqueous TiO2 slurry reactor. Applied Catalysis B: Environmental, 39, 221-231.
[7] Yang, Y.X., Ma, J., Qin, Q.D. and Zhai, X.D. (2007) Degrada-tion of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A: Chemical, 267, 41-48.
[8] Rosal, R., Rodriguez, A., Gonzalo, M.S. and Garcia-Calvo, E. (2008) Catalytic ozonation of naproxen and carbamazepine on titanium dioxide. Applied Catalysis B: Environmental, 84, 48-57.
[9] Chen, Y.X., Yang, S.Y., Wang, K., et al. (2005) Role of primary active species and TiO2 surface characteristic in UV-illuminated photodegradation of Acid Orange 7. Journal of Photochemistry and Photobiology A, 172, 47-54
[10] Spurr, R.A. and Myers, W. (1957) Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Analytical Chemistry, 29, 760-762.
[11] Nian, J.N. and Teng, H.S. (2006) Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. Journal of Physical Chemistry B, 110, 4193-4198.
[12] 江芳, 郑正, 郑寿荣, 许昭怡, 安立超 (2008) 焙烧温度对TiO2纳米管结构及吸附性能的影响. 环境科学, 6, 731-735.
[13] Yang, Y.X., Ma, J., Qin, Q.D. and Zhai, X.D. (2007) Degradation of nitrobenzene by nano-TiO2 catalyzed ozonation. Journal of Molecular Catalysis A: Chemical, 267, 41-48.