基于自适应速率限制的拥塞控制算法研究
A Research Based on Adaptive Rate Limiting Congestion Control Algorithm
DOI: 10.12677/HJWC.2015.51006, PDF, HTML, XML, 下载: 2,769  浏览: 7,705  国家自然科学基金支持
作者: 张 品, 高大冬, 王春霞, 张洪峰:杭州电子科技大学通信工程学院,浙江 杭州
关键词: 无线传感器网络拥塞控制松弛技术最大–最小公平性Wireless Sensor Network Congestion Control Relaxation Technology Max-Min Fairness
摘要: 由于无线传感器网络(WSN)中传感节点的局限性,网络数据流在节点处聚集易引起网络拥塞,造成大量数据包的丢失,从而降低网络的服务质量。如何限制网络数据流的传输速率,对拥塞进行控制一直是无线传感器网络的研究热点之一。为解决无线传感器网络中的拥塞问题,本文结合松弛技术的速率限制方式和最大–最小公平性的资源共享分配方式,提出一种基于自适应速率限制的拥塞控制算法(ARLCC)。仿真实验表明,ARLCC方案不仅能有效缓解拥塞,还保证了数据包传输的可靠性和公平性。
Abstract: Due to the limit of sensor node in Wireless Sensor Network (WSN), the network will lead to con-gestion when a lot of data streams aggregate in a node. This situation will result in the loss of large amounts of data packets and the deterioration of Quality-of-Service. It has been a hot topic to limit the rate of data traffic and avoid possible congestion in the WSN. By integrating the rate limiting method of the relaxation technology (RT) and the equitable distribution method of max-min fair (MMF) resource sharing, this paper proposes a novel adaptive rate limiting congestion control (ARLCC) algorithm to solve the congestion in WSN. The experiments show that ARLCC scheme can alleviate the network congestion and ensure the fairness and reliability of data transmission.
文章引用:张品, 高大冬, 王春霞, 张洪峰. 基于自适应速率限制的拥塞控制算法研究[J]. 无线通信, 2015, 5(1): 36-42. http://dx.doi.org/10.12677/HJWC.2015.51006

参考文献

[1] Chaos, G. (2011) Wireless sensor networks for industrial process monitoring and control: A survey. Network Protocols and Algorithms, 3, 46-63.
[2] Sankarasubramaniam, Y, Akan, O.B. and Akyildiz, I.F. (2003) ESRT: Event-to-sink reliable transport in wireless sensor networks. Proceedings of the 4th ACM International Symposium on Mobile Adhoc Networking & Computing. ACM, Annapolis, 1-3 June 2003, 177-188.
[3] Ee, C.T. and Bajcsy, R. (2004) Congestion control and fairness for many-to-one routing in sensor networks. Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems, ACM, New York, 148-161.
[4] Prabakaran, N., Raja, B.S., Prabakaran, R., et al. (2011) Rate optimization scheme for node level congestion in wireless sensor networks. International Conference on Devices and Communications (ICDeCom), Mesra, 24-25 February 2011, 1-5.
[5] Misra, S., Tiwari, V. and Obaidat, M.S. (2009) LACAS: Learning automate-based congestion avoidance scheme for health-care wireless sensor networks. IEEE Journal on Selected Areas in Communications, 27, 466-479.
[6] Wan, C.Y., Eisenman, S.B. and Campbell, A.T. (2003) CODA: Congestion detection and avoidance in sensor networks. Proceedings of the 1st International Conference on Embedded Networked Sensor Systems, ACM, New York, 266-279.
[7] 汪学舜, 余少华, 罗婷 (2011) 自适应带宽的最大–最小公平性拥塞控制. 小型微型计算机系统, 7, 1255-1259.
[8] 陈瑾平, 杨绿溪 (2012) OFDMA系统基于QoS保证和最大最小公平性准则下的动态资源分配. 信号处理, 12, 1824-1830.
[9] Tassiulas, L. and Sarkar, S. (2002) Max-min fair scheduling in wireless networks. INFOCOM 2002. 21st Annual Joint Conferences of the IEEE Computer and Communications Societies, 763-772.
[10] Wang, X. and Kar, K. (2004) Distributed algorithms for max-min fair rate allocation. In: ALOHA Networks, Proc. Allerton Conference, 235-240.
[11] Minoli, D. (1993) Broadband network analysis and design. Artech House, Inc., London, Boston.
[12] Otal, B., Alonso, L. and Verikoukis, C. (2011) A new MAC Approach in Wireless Body Sensor Networks for Health Care. Emerging Communications for Wireless Sensor Networks, 2, 91-116.
[13] Bertsekas, D.P., Gallager, R.G. and Humblet, P. (1987) Data networks. Prentice-Hall, Englewood Cliffs.
[14] Braga, T.R.M., Silva, F., Ruiz, L.B., et al. (2004) Mannasim: A framework to the simulation of wireless sensors networks. Electronics Magazine of Undergraduate Scientific Research of the Brazilian Computer Science Society (REIC), 6, 50-56.