一种UHF RFID阅读器终端可调谐圆极化天线研究
Analysis on Tunable Circularly Polarized Antenna for Applications of UHF RFID Reader Devices
DOI: 10.12677/JA.2015.41001, PDF, HTML, XML, 下载: 2,729  浏览: 8,899  国家自然科学基金支持
作者: 吴凯敏, 赵雪峰, 黄勇军, 孙海斌, 文光俊:电子科技大学通信与信息工程学院射频集成电路与系统研究中心,四川 成都
关键词: 圆极化天线UHF RFID铁氧体可调谐Circularly Polarized Antenna UHF RFID Ferrite Tunable
摘要: 本文理论和仿真研究一种基于铁氧体基板的应用于超高频(UHF)射频识别(RFID)阅读器终端的可调谐型圆极化天线。这种天线由上层印制有辐射贴片的介质板、中间铁氧体层以及下层印制有接地面的介质板构成。其中铁氧体层在外加磁场作用下能使常规微带天线提供圆极化的辐射特性。更重要的是,这种天线的圆极化工作频率可随外加磁场强度的变化而产生频移特性,从而可覆盖世界范围内的所有UHF RFID工作频率。本文首先理论分析这种天线实现圆极化以及频率可调谐的原理,然后通过仿真研究实现一种可工作在840 MHz至960 MHz频率范围内的微带天线,3-dB阻抗带宽为7 MHz。同时,这种天线的增益在−1.9 dBic至2.5 dBic范围内可调,且在阻抗带宽内具有能覆盖120˚的3-dB轴比特性。
Abstract: A tunable circularly polarized (CP) patch antenna based on ferrite substrate is discussed in this paper, for universal ultra-high-frequency (UHF) RF identification (RFID) applications. Such antenna is composed of top dielectric layer printed with rectangular radiation patch, middle ferrite layer, and bottom dielectric layer printed with ground plane. The ferrite layer under an applied dc magnetic bias provides the CP radiation characteristic. Most importantly, ferrite layer can tune arbitrarily the operating frequency band in a wide range covering all the worldwide operating frequency bands of UHF RFID, by adjusting the dc magnetic bias. Theoretical analysis on the reason to realize CP properties without perturbation for the radiation patch and the tunability of operating frequency are firstly presented. Numerical results demonstrate that the proposed antenna, can be arbitrarily operated from 840 to 960 MHz with a narrow impedance bandwidth of about 7 MHz, a tunable gain level ranged from −1.9 to 2.5 dBic, and a wide 3-dB AR beamwidth of 120˚ over the impedance bandwidth.
文章引用:吴凯敏, 赵雪峰, 黄勇军, 孙海斌, 文光俊. 一种UHF RFID阅读器终端可调谐圆极化天线研究[J]. 天线学报, 2015, 4(1): 1-8. http://dx.doi.org/10.12677/JA.2015.41001

参考文献

[1] Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., Balazinska, M. and Borriello, G. (2009) Building the internet of things using RFID: The RFID ecosystem experience. IEEE Internet Computing, 13, 48-55.
[2] Chen, Z.N. and Qing, X. (2010) Asymmetric-circular shaped slotted microstrip antennas for circular polarization and RFID applications. IEEE Transactions on Antennas and Propagation, 58, 3821-3828.
[3] Rao, K.S., Nikitin, P.V. and Lam, S.F. (2005) Antenna design for UHF RFID tags: A review and a practical application. IEEE Transactions on Antennas and Propagation, 53, 3870-3876.
[4] Chen, Z.N., Qing, X. and Chung, H.L. (2009) A universal UHF RFID reader antenna. IEEE Transactions on Microwave Theory and Techniques, 57, 1275-1282.
[5] Wang, Z., Fang, S., Fu, S. and Jia, S. (2011) Single-fed broadband circularly polarized stacked patch antenna with horizontally meandered strip for universal UHF RFID applications. IEEE Transactions on Microwave Theory and Techniques, 59, 1066-1073.
[6] Pozar, D.M. (1992) Radiation and scattering characteristics of microstrip antennas on normally biased ferrite substrates. IEEE Transactions on Antennas and Propagation, 40, 1084-1092.
[7] Mishra, R.K., Pattnaik, S.S. and Das, N. (1993) Tuning of microstrip antenna on ferrite substrate. IEEE Transactions on Antennas and Propagation, 41, 230-233.
[8] Sigalov, M., Shavit, R., Joffe, R. and Kamenetskii, E.O. (2013) Manipulation of the radiation characteristics of a patch antenna by small ferrite disks inserted in its cavity domain. IEEE Transactions on Antennas and Propagation, 61, 2371-2379.
[9] Zervos, T., Alexandridis, A.A., Lazarakis, F., Pissas, M., Stamopoulos, D., Angelopoulos, E.S. and Dangakis, K. (2012) Design of a polarisation reconfigurable patch antenna using ferrimagnetic materials. IET Microwaves, Antennas & Propagation, 6, 158-164.
[10] Hwang, K.C. and Eom, H.J. (2005) Tunable notch filter of ferrite-filled grooves in parallel plates. IEEE Microwave and Wireless Components Letters, 15, 363-365.
[11] Huang, Y., Wen, G., Li, T. and Xie, K. (2010) Positive-negative-positive metamaterial consisting of ferrimagnetic host and wire array. Applied Computational Electromagnetics Society Journal, 25, 696-702.
[12] Huang, Y.J., Wen, G.J., Yang, Y.J. and Xie, K. (2012) Tunable dual-band ferrite-based metamaterials with dual negative refractions. Applied Physics A, 106, 79-86.
[13] Lax, B. and Button, K.J. (1962) Microwave ferrites and ferrimagnetics. McGraw-Hill, New York.
[14] Pozar, D.M. (2009) Microwave engineering. John Wiley & Sons, New York.