JWRR  >> Vol. 4 No. 2 (April 2015)

    Analysis of Rainfall Extreme in Han River Basin Based on PDS/GP Model

  • 全文下载: PDF(2584KB) HTML   XML   PP.109-118   DOI: 10.12677/JWRR.2015.42014  
  • 下载量: 1,776  浏览量: 5,663  


李 丹,郭生练,洪兴骏:武汉大学水资源与水电工程科学国家重点实验室,湖北 武汉

降雨极值汉江流域重现期PDS/GP模型AM/PIII模型Rainfall Extreme Han River Basin Return Period PDS/GP Model AM/PIII Model


以汉江流域15个气象站1961~2010年的实测逐月降雨系列为例,将平均超出量函数和参数估计量变化两种阈值选取方法相结合,确定了各系列的合理阈值,并采用拟合残差法来减小阈值选取的不确定性。采用超定量(PDS)和年最大(AM)取样方法,选择广义Pareto (GP)和皮三型(PIII)分布,分别构建PDS/GP和AM/PIII模型,分析汉江流域降雨极值变化特征,预测汉江流域各站20年、50年、100年和200年一遇的月降雨极值。对比分析两种模型的计算结果,AM/PIII模型的估计值普遍大于PDS/GP模型,但受月降雨极值年际变化和空间差异的影响,差别不显著。

The monthly rainfall of 15 meteorological stations in Han River basin from 1961 to 2010 was taken as case study. Two methods of mean residual life and change of parameters were combined to determine the proper thresholds for each data series, and the fit residuals method was adopted to reduce the uncertainty during the process. Partial duration series (PDS) and annual maximum (AM) series were obtained and fitted by General Pareto (GP) and Pearson Type III (PIII) distributions, respectively. The PDS/GP and AM/PIII models were constructed and used to analyze rainfall extreme variations and predict rainfall quantiles with 20a, 50a, 100a and 200a return periods for each station. The results and comparison indicated that the estimates supplied by AM/PIII model were mostly lager than that of PDS/GP model, while the differences were not so much significant because of the temporal and spatial variations of the monthly rainfall extremes.

李丹, 郭生练, 洪兴骏. 基于PDS/GP模型分析汉江流域降雨极值特征[J]. 水资源研究, 2015, 4(2): 109-118. http://dx.doi.org/10.12677/JWRR.2015.42014


[1] IPCC, 2012: Summary for policymakers. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge Uni-versity Press, Cambridge, UK, and New York, NY, USA, pp. 1-19.
[2] 张利平, 杜鸿, 夏军, 等. 气候变化下极端水文事件的研究进展[J]. 地理科学进展, 2011, 30(11): 1370-1379. ZHANG Liping, DU Hong, XIA Jun, et al. Progress in the study of extreme hydrologic events under climate change. Progress in Geography, 2011, 30(11): 1370-1379. (in Chinese)
[3] 史道济. 实用极值统计方法[M]. 天津: 天津科技出版社, 2006. SHI Daoji. Practical methods of extreme value statistics. Tianjin: Tianjin Science and Technology Press, 2006. (in Chinese)
[4] 翟盘茂, 任福民, 张强. 中国降水极值变化趋势检测[J]. 气象学报, 1999, 57(2): 208-216. ZHAI Panmao, REN Fumin and ZHANG Qiang. Detection of trends in China’s precipitation extremes. Acta Meteorologica Si-nica, 1999, 57(2): 208-216. (in Chinese)
[5] 黄琰, 封国林, 董文杰. 近50年中国气温, 降水极值分区的时空变化特征[J]. 气象学报, 2011, 69(1): 125-136. HUANG Yan, FENG Guolin and DONG Wenjie. Temporal changes in the patterns of extreme air temperature and precipitation in the various regions of China I recent 50 years. Acta Meteorologica Sinica, 2011, 69(1): 125-136. (in Chinese)
[6] 姜彤, 苏布达, Marco Gemmer. 长江流域降水极值的变化趋势[J]. 水科学进展, 2008, 19(5): 650-655. JINAG Tong, SU Buda and MARCO Gemmer. Trends in precipitation extremes over the Yangtze River basin. Advances in Water Science, 2008, 19(5): 650-655. (in Chinese)
[7] 王俊, 郭生练. 南水北调中线工程水源区汉江水文水资源分析关键技术研究与应用[M]. 北京: 中国水利水电出版社, 2010. WANG Jun, GUO Shenglian. Research and application of key technique for the Hydrological Features and Water Resources of Han River in the Middle Route of South-to-North Water Transfer Project. Beijing: China Water Power Press, 2010. (in Chi-nese)
[8] 郭生练. 设计洪水研究进展与评价[M]. 北京: 中国水利水电出版社, 2005. GUO Shenglian. Advance and assessment of design flood methods. Beijing: China Water Power Press, 2005. (in Chinese)
[9] 王善序. 洪水超定量系列频率分析[J]. 人民长江, 1999, 30(8): 24-26. WANG Shanxu. Flood frequency analysis based on super-quantitative series. Yangtze River, 1999, 30(8): 24-26. (in Chi-nese)
[10] 戴昌军, 梁忠民, 栾承梅, 等. 洪水频率分析中PDS模型研究进展[J]. 水科学进展, 2006, 17(1): 136-140. DAI Changjun, LIANG Zhongmin, LUAN Chengmei, et al. Advance in flood frequency analysis for partial duration series. Advances in Water Science, 2006, 17(1): 136-140. (in Chinese)
[11] WILLEMS, P. Compound intensi-ty/duration/frequency-relationships of extreme precipitation for two seasons and two storm types. Journal of Hydrology, 2000, 233(1-4): 189-205.
[12] NTEGEKA, V., WILLEMS, P. Trends and multidecadal oscillations in rainfall extremes, based on a more than 100-year time series of 10 min rainfall intensities at Uccle, Belgium. Water Resources Research, 2008, 44(7): W07402.
[13] NYEKO-OGIRAMOI, P., WILLEMS, P. and NGIRANE-KATASHAYA, G. Trend and variability in observed hydrometeorological extremes in the Lake Victoria basin. Journal of Hydrology, 2013, 489: 56-73.
[14] VAN MONTFORT, M. A. J., WITTER, J. V. Testing exponentiality against generalised Pareto distribution. Journal of Hydrology, 1985, 78(3-4): 305-315.
[15] DUPUIS, D. J. Exceedances over high thresholds: A guide to threshold selection. Extremes, 1999, 1(3): 251-261.
[16] BEHRENS, C. N., Lopes, H. F. and Gamerman, D. Bayesian analysis of extreme events with threshold estimation. Statistical Modelling, 2004, 4(3): 227-244.
[17] SCARROTT, C., MACDONALD, A. A review of extreme value threshold estimation and uncertainty quantification. REVSTAT—Statistical Journal, 2012, 10(1): 33-60.