材料科学  >> Vol. 5 No. 3 (May 2015)

石墨烯及其复合功能材料应用研究进展
Research Progress on Application of Graphene and Its Composite Material

DOI: 10.12677/MS.2015.53009, PDF, HTML, XML, 下载: 3,995  浏览: 19,455  国家自然科学基金支持

作者: 陈汪洋, 陶绪泉, 李玉超, 葛祥才, 班朝磊:聊城大学材料科学与工程学院,山东 聊城;王怀生:聊城大学化学化工学院,山东 聊城

关键词: 石墨烯复合材料制备应用Graphene Composite Material Preparation Application

摘要: 概述了石墨烯及其复合功能材料在能源领域、环境保护领域、生物医学领域、传感器和检测等领域的应用进展,着重介绍了其在能源领域中锂离子电池、超级电容器和太阳能电池方面的研究成果,并展望了石墨烯及其复合功能材料的应用前景。
Abstract: The application of graphene and graphene matrix composite functional materials in the field of energy, environmental protection, analysis of biomedicine, sensor system in instrument testing are summarized in this paper. It especially introduces the research of lithium ion battery, super capacitor, and solar cells in the energy field. And the application prospect of graphene and gra-phene matrix composite materials is described.

文章引用: 陈汪洋, 陶绪泉, 王怀生, 李玉超, 葛祥才, 班朝磊. 石墨烯及其复合功能材料应用研究进展[J]. 材料科学, 2015, 5(3): 62-71. http://dx.doi.org/10.12677/MS.2015.53009

参考文献

[1] Novoselov, K.S., Geim, A.K. and Morozov, S.V. (2004) Electric field effect in atomically thin carbon films. Science, 5696, 666-669.
[2] Allen, M.J., Tung, V.C. and Kaner, R.B. (2010) Honeycomb carbon: A review of graphene. Chemical Reviews, 1, 132- 145.
[3] 高秋菊, 夏绍灵, 邹文俊 (2013) 高分子/石墨烯纳米复合材料研究进展. 高分子通报, 9, 87-91.
[4] Zhang, Y., Tan, J.W., Stormer, H.L., et al. (2005) Experimental observation of the quantum Hall effect and Berry’s phase in grapheme. Nature, 7065, 201-204.
[5] Lee, C., Wei, X.D., Kysar, J.W., et al. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 5887, 385-388.
[6] Chae, H.K., Siberio-Pérez, D.Y., Kim, J., et al. (2004) A route to high surface area, porosity and inclusion of large molecules in crystals. Nature, 6974, 523-527.
[7] 匡达, 胡文彬 (2013) 石墨烯复合材料的研究进展. 无机材料学报, 3, 235-243.
[8] Ruoff, R.S., Nguyen, S.T. and Piner, R.D. (2006) Graphene-based composite materials. Nature, 441, 282-286.
[9] Novoselov, K.S., Jiang, D. and Schedin, F. (2005) Two-dimensional atomic crystals. PNAS, 30, 10451-10453.
[10] 段淼, 李四中, 陈国华 (2013) 机械法制备石墨烯的研究进展. 材料工程, 12, 85-91.
[11] Qian, W., Hao, R. and Hou, Y. (2009) Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Research, 2, 706-712.
[12] Janowska, I., Chizari, K. and Ersen, O. (2010) Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Research, 3, 126-137.
[13] Peter, W.S., Jan, I.F. and Eu, A.S. (2008) Epitaxial graphene on ruthenium. Nature Materials, 7, 406-411.
[14] Wu, Z.-S., Ren, W.-C. and Gao, L.-B. (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano, 3, 411-417.
[15] Zhang, W.-N., He, W. and Zhang, X.-L. (2010) Characteristics, preparation method and application of graphene. New Chemical Materials, 38, 15-18.
[16] Heer, W.A.D., Berger, C. and Wu, X.-S. (2007) Epitaxial graphene. Solid State Communications, 143, 92-100.
[17] Hummers, W.S. and Offeman, R.E. (1958) Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339.
[18] Stankovich, S., Dikin, D.A. and Piner, R.D. (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558-1565.
[19] Sidorov, A.N., Yazdanpanah, M.M. and Jalilian, R. (2007) Electrostatic deposition of graphene. Nanotechnology, 18, Article ID: 135301.
[20] Choucair, M., Thordarson, P. and Stride, J.A. (2009) Gram-scale production of graphene based on solvothermal synthesis and sonication. Nature Nanotechnology, 4, 30-33.
[21] 张成龙 (2011) 锂离子电池研究现状及展望. 科技致富向导, 22, 139.
[22] Shao Y.Y., Wang, J., Engelhard, M., Wang, C.M. and Lin, Y.H. (2010) Facile and controllable electrochemical reduction of grapheme oxide and its applications. Journal of Materials Chemistry, 20, 743-748.
[23] 陈冠雄, 谈紫琪, 赵元, 倪彬彬, 朱彦武, 陆亚林 (2013) 面向能源领域的石墨烯研究. 中国科学:化学, 6, 704- 715.
[24] 高云雷, 赵东林, 白利忠, 张霁明, 孔莹 (2012) 氮掺杂石墨烯作为锂离子电池负极材料的电化学性能. 中国科技论文, 6, 413-417.
[25] 朱碧玉, 倪江锋, 王海波, 高立军 (2013) 石墨烯在锂离子电池中应用的研究进展. 电源技术, 5, 860-862.
[26] Chou, S.-L., Wang, J.-Z. and Choucair, M. (2010) Enhanced reversible lithium storage in a nanosize silicon/graphene composite. Electrochemistry Communications, 2, 303-306.
[27] 周冠蔚, 何雨石, 杨晓伟 (2012) 石墨烯及其复合材料在锂离子电池中的应用. 化学进展, 2/3, 235-244.
[28] 邢瑞光, 李亚男 (2013) 石墨烯复合材料在超级电容器中的研究进展. 价值工程, 1, 27-28.
[29] Lee, C., Wei, X.D., Kysar, J.W. and Hone, J. (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388.
[30] Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C.N. (2008) Superior thermal conductivity of single-layer graphene. Nano Letters, 8, 902-907.
[31] 杨得志, 沈佳妮, 杨晓伟, 马紫峰 (2014) 石墨烯基超级电容器研究进展. 储能科学与技术, 1, 1-8.
[32] Yang, C.-L., Liu, Y.-Y. and Sun, Y.-P. (2010) Preparation and electrochemical properties of graphene system. Power Supply Technology, 34, 177-180.
[33] Yoon, Y., Lee, K., Baik, C., Yoo, H., Min, M., Park, Y., et al. (2013) Anti-solvent derived non-stacked reduced graphene oxide for high performance supercapacitors. Advanced Materials, 25, 4437-4444.
[34] Wang, Z.-L., Xu, D., Wang, H.-G., Wu, Z. and Zhang, X.B. (2013) In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano, 7, 2422-2430.
[35] 周颖, 姜磊, 阎景旺, 王春雷, 肖南 (2014) 石墨烯纸的制备及电容特性. 高等学校化学学报, 3, 619-625.
[36] Gopalakrishnan, K., Govindaraj, A. and Rao, C.N.R. (2013) Extraordinary supercapacitor performance of heavily nitrogenated graphene oxide obtained by microwave syn-thesis. Journal of Materials Chemistry A, 1, 7563-7565.
[37] 金莉, 孙东, 张剑荣 (2012) 石墨烯/聚3,4-乙烯二氧噻吩复合物的电化学制备及其在超级电容器中的应用. 无机化学学报, 6, 1084-1090.
[38] Cong, H.P., Ren, X.C., Wang, P. and Yu, S.-H. (2013) Flexible grapheme-polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science, 6, 1185-1191.
[39] Wang, W.-J., Hao, Q.-L., Lei W., Xia, X.F. and Wang, X. (2012) Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Advances, 2, 10268-10274.
[40] Miao, X., Tongay, S., Petterson, M.K., Berke, K., Rinzler, A.G., Appleton, B.R. and Hebard, A.F. (2012) High efficiency graphene solar cells by chemical doping. Nano Letters, 12, 2745-2750.
[41] Malig, J., Jux, N., Kiessling, D., Cid, J.J., Vázquez, P., Torres, T. and Guldi, D.M. (2011) Towards tunable graphene/phthalocyanine-PPV hybrid systems. Angewandte Chemie International Edition, 50, 3561-3565.
[42] 宋月丽, 谈发堂, 王维, 乔学亮, 陈建国 (2012) 石墨烯纳米复合材料的制备与应用研究进展. 化学与生物工程, 9, 6-10.
[43] 张超, 陈学康, 郭磊, 王兰喜 (2012) 石墨烯太阳能电池透明电极的可行性分析. 真空与低温, 3, 160-166.
[44] 吕孝鹏, 邓雅丽, 许元鲜, 王珊珊, 何杰, 马锡英 (2013) 石墨烯/硅肖特基太阳能电池的光电特性. 物理实验, 5, 1-4.
[45] 周丽, 邓慧萍, 万俊力, 张瑞金 (2013) 石墨烯基铁氧化物磁性材料的制备及在水处理中的吸附性能. 化学进展, 1, 145-155.
[46] 张景煌 (2011) 石墨烯复合物在含Hg废水处理中的应用研究. 闽西职业技术学院学报, 2, 115-120.
[47] 程相阵, 周毅, 姜再兴, 代文杰, 刘新颖, 翟舒娅 (2012) 氧化石墨烯载药性能和生物安全性研究现状. 生物医学工程与临床, 4, 402-405.
[48] Tang, Z.W., Wu, H., Cort, Z.R., Buchko, G.W., Zhang, Y., Shao, Y., et al. (2010) Constraint of DNA on functionalized graphene improves its biostability and specificity. Small, 6, 1205-1209.
[49] Hu, W.-B., Peng, C., Luo, W.-J., Lv, M., Li, X.M., Li, D., et al. (2010) Graphene based antibacterial paper. ACS Nano, 4, 4317-4323.
[50] 夏前芳, 罗丹, 李在均 (2012) 石墨烯基葡萄糖生物传感器的电化学制备及应用. 化学学报, 19, 2079-2084.
[51] 张达, 周非凡, 邢达 (2013) 功能化氧化石墨烯的靶向肿瘤成像与光热治疗. 科学通报, 7, 586-592.
[52] 许振宁, 王默, 殷焕顺, 艾仕云 (2012) 基于氮掺杂石墨烯传感器检测双酚A. 化学传感器, 4, 21-27.
[53] 张焕林, 李芳芳, 刘柯钊 (2012) 石墨烯气敏性能的研究进展. 材料导报A: 综述篇, z1, 39-43.
[54] Duan, C.-Y., Ye, N.-S. and Gu, X.-X. (2011) Progress of application of graphene in analytical science. Chemistry Bulletin, 74, 1090-1095.
[55] 李理, 卢红梅, 邓留 (2013) 基于石墨烯和金纳米棒复合物的过氧化氢电化学传感器. 分析化学, 5, 719-724.
[56] 王彩凤 (2010) 基于石墨烯复合材料的酶电化学传感器的研究. 硕士论文, 南京理工大学, 南京.
[57] 杨文慧, 罗文超, 冯亚娟, 华梅, 赵晓慧 (2011) 基于石墨烯/铂纳米颗粒复合材料的过氧化氢无酶传感器的研制. 云南师范大学学报, 4, 11-15.
[58] 徐运妹, 李丹, 张玲, 童海霞, 杨蕊琼, 安振宇, 李文杞 (2014) 基于氧化石墨烯修饰的DNA生物传感器用于苯酚的检测. 化学传感器, 1, 44-50.
[59] Meng, Y., Gu, D., Zhang, F.-Q., Shi, Y.F., Cheng, L., Feng, D., et al. (2006) A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly. Chemistry of Materials, 18, 4447-4464.