材料科学  >> Vol. 5 No. 3 (May 2015)

熔融盐在太阳能热发电中的应用及性能研究现状
Research Progress of the Application and Properties of Molten Salt to Solar Thermal Power

DOI: 10.12677/MS.2015.53010, PDF, HTML, XML, 下载: 2,651  浏览: 10,161  科研立项经费支持

作者: 王立娟, 闫全英:北京市建筑能源高效综合利用工程技术研究中心,北京

关键词: 太阳能热发电熔融盐储热材料热物性Solar Thermal Power Molten Salt Heat Storage Material Thermal Properties

摘要: 熔盐储热材料具有粘度低,流动性能好,系统压力小,比热容高,蓄热能力强,成本较低等诸多优点,已成为太阳能高温传热蓄热介质的良好选择。本文从熔融盐的种类和热物性研究方面就国内外的研究现状做了详细介绍,展望了熔融盐作为储热材料的应用前景。
Abstract: The molten salt heat storage material with low viscosity, good fluidity, low system pressure, high specific heat capacity, strong heat storage capacity, low cost and many other advantages, has be-come a good choice for solar heat storage medium. This paper introduced the present situation of domestic and foreign researches about the types and thermal properties of molten salt in detail. The application prospect of molten salt for storing heat was prospected.

文章引用: 王立娟, 闫全英. 熔融盐在太阳能热发电中的应用及性能研究现状[J]. 材料科学, 2015, 5(3): 72-78. http://dx.doi.org/10.12677/MS.2015.53010

参考文献

[1] BP公司 (2014) 2014年BP世界能源统计年鉴. BP公司.
[2] Fuel from the Sky: Solar Power’s Potential for Western Energy Supply (NREL/BK-550-32160).
[3] 陈昕, 范海涛 (2012) 太阳能光热发电技术发展现状. 能源与环境, 1, 90-92.
[4] 魏高升, 邢丽婧, 杜小泽, 杨勇平 (2014) 太阳能热发电系统相变储热材料选择及研发现状. 中国电机工程学报, 3, 325-331.
[5] Herrmann, U. (2002) Survey of thermal energy storage for parabolic trough power plants. Journal of Solar Engineering, 124, 145-152.
[6] Doug, B. and John, W. (2005) Testing of thermo cline filler materials and molten-salt heat transfer fluids for thermal energy storage systems in parabolic trough power plants. Journal of Solar energy Engineering, 127, 109-116.
[7] Kelly, B.D. (2000) Lesson learned, project history, and oper-ating experience of the solar two project. Sandia National Laboratories Report, SAND2000-2598, November 2000.
[8] Zavoico, A.B. (1994) Solar power tower design basic document. Sandia National Laboratories.
[9] Pacheco, J., Bradshaw, R., Dawson, D., et al. (2002) Final test and evaluation results from the solar two project. Solar Thermal Technol. Dept., Sandia Nat. Labs., NM, Tech. Rep. SAND2002-0120.
[10] Reilly, H. and Kolb, G. (2001) Ban evaluation of molten-salt power towers including results of the Soalr Two project. Solar Thermal Technol. Dept., Sandia Nat. Labs., NM, Tech. Rep. SAND2001-3674.
[11] CSPTIME太阳能热发电网. http://www.csptime.com/portal.php
[12] Gil, A., Medrano, M., Martorell, I., et al. (2010) State of the art on high tem-perature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14, 31-55.
[13] 中国电力电子产业网. http://www.china5e.com/index.php?m=content&c=index&a=show&catid=13&id=867950.
[14] 郭洁 (2014) 太阳宝: 率先开启熔融盐储能发电新篇章. 国际融资, 7, 20-21.
[15] 路阳, 彭国伟, 王智平, 王克振, 马榕彬 (2011) 熔融盐相变储热材料的研究现状及发展趋势. 材料导报, 21, 38- 42.
[16] Williams, D.F., Toth, L.M. and Clano, K.T. (2006) Assessment of candidate molten salt coolants for the advanced high-temperature reactor. ORNL/TM-2006/12, USA.
[17] Soha, M.S., Ebner, M.A., Sabarwall, P., Sharpe, P. (2010) Engineering database of liquid salt thermophys-ical and thermochemical properties. Idaho National Laboratory Report, No. INL/EXT-10-18297, USA.
[18] Bradshaw, R.W. and Siegel, N.P. (2008) Molten nitrate salt development for thermal energy storage in parabolic trough solar power systems. Proceedings of ES2008, Energy Sustainability 2008, Jacksonville, 10-14 August 2008, 55- 67.
[19] Petri, R., Claar, T.D. and Marianowski, L.G. (1979) Evaluation of molten carbonates as latent heat thermal energy storage materials. Proceeding of the Intersociety Energy Conversation Engineering Conference, Boston, 5-10 August 1979, 487-493.
[20] Petri, R. (1983) High-temperature salt-ceramic thermal storage phase-change media. Proceeding of the Intersociety Energy Conversation Engineering Conference, Orlando, 21-26 August 1983, 1769-1774.
[21] Araki, N., Matsuura, M., Makino, A., Hirata, T. and Kato, Y. (1988) Measurement of thermophysical properties of molten salts: Mixtures of alkaline carbonate salts. International Journal of Thermophysics, 9, 1071-1080.
[22] Kourkova, L. and Sadovska, G. (2007) Heat capacity, enthalpy and entropy of Li2CO3 at 303.15-563.15K. Thermochimica Acta, 452, 80-81.
[23] Williams, D.F., Wilson, D.F., Toth, L.M., Caja, J. and Keiser, J.R. (2003) Research on molten fluorides as high temperature heat transfer agents. Proceedings of the Global 2003, Embedded Topical in 2003 American Nuclear Society Winter Meeting, New Orleans, 16-20 November 2003.
[24] Nunes, V.M.B., Lourenco, M.J.V., Santos, F.J.V. and de Castro, C.A.N. (2003) Importance of accurate data on viscosity and thermal conductivity in molten salts applications. Journal of Chemical & Engineering Data, 48, 446-450.
[25] Eck, M. and Hennecke, K. (2007) Heat transfer fluids for future parabolic trough solar thermal power plants. Proceedings of ISES World Solar Congress 2007: Solar Energy and Human Settlement, Beijing, 18-21 September 2007, 1806- 1812.
[26] Takahashi, Y., Sakamoto, R. and Kamimoto, M. (1988) Heat capacities and latent heats of LiNO3, NaNO3, and KNO3. International Journal of Thermophysics, 9, 1081-1090.
[27] Tufeu, R., Petitet, J.P. and Denielou, L. (1985) Experimental determination of the thermal conductivity of molten pure salts and salt mixtures. International Journal of Thermophysics, 6, 315-330.
[28] Ren, N., Wu, Y.T., Wang, T. and Ma, C.F. (2011) Experimental study on optimized composition of mixed carbonate for phase change thermal storage in solar thermal power plant. Journal of Thermal Analysis and Calorimetry, 104, 1201-1208.
[29] Wu, Y.T., Ren, N., Wang, T. and Ma, C.F. (2011) Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. Solar Energy, 85, 1957-1966.
[30] Ren, N., Wu, Y.T. and Ma, C.F. (2011) Preparation and experimental study of molten salt with low melting point. Proceeding of Solar PACES 2011 Conference, Granada, 20-23 September 2011.
[31] 廖敏, 魏小兰, 丁静, 胡宝华, 彭强 (2010) LNK碳酸熔盐热物性能研究. 太阳能学报, 7, 863-867.
[32] 廖敏, 丁静, 魏小兰, 杨晓西, 杨建平 (2008) 高温碳酸熔盐的制备及传热蓄热性质. 无机盐工业, 10, 15-17.
[33] 彭强, 魏小兰, 丁静, 杨建平, 杨晓西 (2009) 多元混合熔融盐的制备及其性能研究. 太阳能学报, 12, 1621- 1626.
[34] 任楠, 王涛, 吴玉庭, 马重芳 (2011) 混合碳酸盐的DSC测量与比热容分析. 化工学报, S1, 197-202.
[35] 任楠 (2011) 混合碳酸盐和低熔点熔盐的配制与热物性实验研究. 硕士论文, 北京工业大学, 北京, 1-18.
[36] 程晓敏, 陶冰梅, 朱闯, 李元元 (2014) 四元碳酸盐相变储热材料的制备及热物性研究. 化工新型材料, 6, 49-51.
[37] 杜威 (2013) 碳酸盐–氟盐高温熔盐的性能研究. 硕士论文, 东北大学, 沈阳, 14-28.
[38] 陈永昌, 吴玉庭, 任楠, 马重芳 (2012) 高温传热熔融盐黏度特性的实验研究. 中国科学: 技术科学, 2, 150-154.
[39] 刘斌, 叶猛, 吴玉庭, 马重芳 (2008) 混合氯化熔融盐的腐蚀性实验. 工程热物理学报, 12, 2131-2133.
[40] 胡宝华, 丁静, 魏小兰, 彭强, 廖敏 (2010) 高温熔盐的热物性测试及热稳定性分析. 无机盐工业, 1, 22-24.