流道特性对流体压力影响的分子动力学研究
Effect of Nanochannel Properties on the Pressure of Fluid Film by Molecular Dynamics
DOI: 10.12677/MP.2015.53008, PDF, HTML, XML,  被引量 下载: 2,664  浏览: 9,657  科研立项经费支持
作者: 贾 妍, 薛 晔:西安工程大学,陕西 西安
关键词: 分子动力学势能指数液体薄膜射流Molecular Dynamics Potential Interaction Strength Fluid Film Jet
摘要: 应用分子动力学方法研究纳米流道不同固–液间相互作用势能指数对液体流动特性的影响。研究结果显示,纳米尺度下流道出口高度及固液间相互作用势能不同会引起流体压力的改变,并出现射流现象。出口端距离较小时,流道内液体流动规律不再服从NS方程——按照分子动力学模拟与按NS或Renolds方程求解得到的压力分布结果存在较大的差异,此时射流现象比较明显,射流速度随着固液间势能指数的增强呈线性增大趋势。随着出口端高度的增加,纳米尺度效应减弱,压力分布逐渐趋近宏观流动下的压力分布曲线,固液间势能指数对于射流速度的大小不再产生明显的影响。
Abstract: Molecular dynamics method is applied to study the influence of potential interaction strength be-tween the liquid and the solid on the properties of fluid film in nanochannels. The results indicate: the pressure distribution of fluid film is changed in Nanochannels with the change of the height of channel in the outlet end and the liquid-solid potential interaction strength. At the same time, the jet phenomenon can occur in the outlet end. The difference of the pressure distribution between the results obtained by molecular dynamics simulation and that by NS or Renolds equation is much bigger. At this point, the jet phenomenon is more obvious. The jet velocity increases linearly as the liquid-solid potential rises. With the increasing height of the outlet, the nanoscale effect becomes weaker and weaker. The pressure profile gradually approaches to that of the macro-flow. The liquid-solid potential has no significant effect on the jet velocity.
文章引用:贾妍, 薛晔. 流道特性对流体压力影响的分子动力学研究[J]. 现代物理, 2015, 5(3): 57-64. http://dx.doi.org/10.12677/MP.2015.53008

参考文献

[1] Ju, S.-P. (2005) A molecular dynamics simulation of the adsorption of water molecules surrounding an Au nanoparticle. The Journal of chemical Physics, 122, 094718(1-6).
[2] Xie, H. and Liu, C. (2012) Molecular dynamics simulation of gas flow in nanochannel with a Janus interface. AIP Advances, 2, 042126(1-8).
[3] Hoang, H. and Galliero, G. (2013) Shear behavior of a confined thin film influence of the molecular dynamics scheme employed. The Journal of Chemical Physics, 138, 054707(1-11).
[4] Sasikumar, K. and Keblinski, P. (2014) Molecular dynamics investigation of nanoscale cavitation dynamics. The Journal of Chemical Physics, 141, 234508(1-7).
[5] Hanasaki, I. and Nakatani, A. (2006) Flow structure of water in carbon nanotubes: Poiseuille type or plug-like? The Journal of Chemical Physics, 124, 144708(1-9).
[6] Hanasaki, I. and Nakatani, A. (2006) Fluidized piston model for molecular dynamics simulations of hydrodynamic flow. Modelling and Simulation in Materials Science and Engineering, 14, s9-s20.
[7] Hanasaki, I. and Nakatani, A. (2009) Molecular dynamics of a water jet from carbon nanotube. Physical Review, E79, 046307(1-7).
[8] Yao, J. (1982) Monte carlo simulation of the grand canonical ensemble. Molecular Physics, 46, 587-594.
[9] Mihaly, M. (1980) A cavity-biased (T,V, μ) Monte Carlo method for the computer simulation of fluids. Molecular Physics, 40, 901-906.
[10] Allen, M.P. and Tildesley, D.J. (1987) Computer simulation of liquids. Oxford University Press, New York.
[11] Camara, L.G. and Bresme, F. (2003) Molecular dynamics simulations of crystallization under confinement at triple point conditions. Journal of Chemical Physics, 19, 2792-2800.
[12] Fernamdo, B and Nicholas, Q. (1999) Computer simulation of wetting and drying of spherical perticulates at a liquid- vapor interface. Journal of Chemical Physics, 10, 3536-3547.
[13] 曹炳阳 (2005) 速度滑移及其对微纳尺度流动影响的分子动力学研究. 博士论文, 清华大学, 北京.
[14] Frenkel, D. and Smit, B. (2002) Understanding molecular simulation from algorithms to applications. Academic Press, California.
[15] Rapaport, D.C. (2004) The art of molecular dynamics simulation. Cambridge University Press, New York.