OJNS  >> Vol. 3 No. 2 (May 2015)

    基于非局部全变差模型和全局非零局部秩惩罚的图像去模糊
    Image Deblurring Based on Non-Local Total Variation and Global Non-Zero Local Rank Penalty

  • 全文下载: PDF(1029KB) HTML   XML   PP.12-18   DOI: 10.12677/OJNS.2015.32003  
  • 下载量: 1,692  浏览量: 6,194   科研立项经费支持

作者:  

汤 捷,夏静满,刘 荣,李星灿:重庆长鹏实业(集团)有限公司,重庆;
厉 伟:重庆华福车船电子设备制造有限公司,重庆

关键词:
非局部全变差全局非零局部秩Non-Local Total Variation Global Non-Zero Local Rank

摘要:

图像成像及分析模块是未来汽车应用系统中的重要组成部分,清晰的图像为后续的智能控制提供可靠保证。然而,由于成像设备自身硬件的问题,使得图像出现模糊等问题。因此,为了能够从降质图像中复原出高质量的清晰图像,并为后续的处理带来便利,本文提出一种基于非局部全变差模型和全局非零局部秩惩罚的图像去模糊方法。非局部全变差模型主要用于恢复图像中的纹理细节,而非零局部秩惩罚则主要用于约束图像的边缘,达到锐化边缘的目的。本文所提出的方法在模拟图像和真实模糊图像的去模糊上都取得了很好的效果。

The imaging and analysis module is an important part of automobile application system in the fu-ture, and clear images provide a reliable guarantee for the intelligent control system. However, due to the existing problems of imaging equipment hardware, the obtained images appear blurring. Therefore, in order to restore the clean images from the blur ones and bring convenience to the subsequent processing, this paper proposes an image deblurring method based on non-local total variation and global non-zero local rank penalty. The non-local total variation model is mainly used to restore the texture details of image, and the non-zero local rank penalty is mainly used to sharp the edge of the image. The proposed deblurring method in this paper has achieved better results on simulated images and real blurred image than other methods.

文章引用:
汤捷, 夏静满, 刘荣, 李星灿, 厉伟. 基于非局部全变差模型和全局非零局部秩惩罚的图像去模糊[J]. 自然科学, 2015, 3(2): 12-18. http://dx.doi.org/10.12677/OJNS.2015.32003

参考文献

[1] Gu, X.J. and Gao, L. (2009) A new method for parameter estimation of edge-preserving regularization in image resto-ration. ELSEVIER Journal of Computational and Applied Mathematics, 225, 478-486.
[2] Tikhonov, A.N. and Arsenin, V.Y. (1977) Solutions of ill-posed problems. Winston and Sons, Washington DC.
[3] Katsaggelos, A.K. and Biemond, J. (1991) A regularized iterative image restoration algorithm. IEEE Transaction in Signal Processing, 39, 914-928.
[4] 徐大宏 (2009) 基于正则化方法的图像复原算法研究. 国防科学技术大学, 长沙.
[5] Vogel, C.R. and Oman, M.E. (1998) Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Transactions on Image Processing, 7, 813-824.
[6] Oliveira, J.P., Bioucas-Dias, J.M. and Figueiredo, M.A.T. (2009) Adaptive total variation image deblurring: A majorization-minimization approach. ELSEVIER Signal Processing, 89, 1683-1693.
[7] Beck, A. and Teboulle, M. (2009) Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems. IEEE Transactions on Image Processing, 18, 2419-2434.
[8] 郑楚君, 李榕, 常鸿森 (2004) 离焦模糊数字图像的wiener滤波频域复原. 激光杂志, 5, 57-58.
[9] Chan, T.F. and Wong, C.K. (1998) Total variation blind deconvolution. IEEE Transactions on Image Processing, 7, 370-375.
[10] Li, W.H., Li, Q.L., Gong, W.G. and Tang, S. (2012) Total variation blind deconvolution employing split Bregman iteration. ELSEVIER Journal of Visual Communication and Image Representation, 23, 409-417.
[11] Gilboa, G. and Osher, S. (2008) Nonlocal operators with applications to image processing. SIAM Multiscale Modeling and Simulation, 7, 1005-1028.
[12] Lou, Y.F., Zhang, X.Q., Osher, S. and Bertozzi, A. (2010) Image recovery via nonlocal operators. Journal of Scientific Computing, 42, 185-197.
[13] Zhang, X.Q., Burger, M., Bresson, X. and Osher, S. (2010) Bregmanized nonlocal regularization for deconvolution and sparse reconstruction. SIAM Journal on Imaging Sciences, 3, 253-276.
[14] Zabih, R. and Woodfill, J. (1994) Non-parametric local transforms for computing visual correspondence. Computer Vision—ECCV’94, Springer, Berlin, Heidelberg, 151-158.