自然科学  >> Vol. 3 No. 2 (May 2015)

假说:TGF-β1/Smad3信号通路参与帕金森病的发生发展
A Hypothesis: TGF-β1/Smad3 Signaling Pathway Participates in the Development of Parkinson’s Disease

DOI: 10.12677/OJNS.2015.32004, PDF, HTML, XML, 下载: 2,305  浏览: 9,980  国家自然科学基金支持

作者: 于永鹏:潍坊医学院附属文登中心医院神经内科,山东 威海

关键词: 帕金森病转化生长因子-β16-羟基多巴胺Parkinson’s Disease Iron TGF-β1 6-Hydroxydopamine

摘要: 帕金森病(Parkinson’s disease, PD)是严重威胁人类健康的神经变性疾病之一,迄今没有特殊有效的治疗方法。脑铁代谢紊乱及其介导的氧化应激反应与PD发病关系密切,但其调节机制尚不明确。新近发现,转化生长因子(Transforming growth factor-β1, TGF-β1)能下调铁蛋白重链(Ferritin heavy chain, FHC)的表达并导致细胞易变铁库增加,在血色素沉着病研究中发现TGF-β1/Smads信号通路通过调节铁调素(Hepcidin, Hep)的表达调控细胞铁代谢。本文重点论述TGF-β1/Smads信号通路参与铁代谢及氧化应激调控的可能机制,并提出医学假说:TGF-β1/Smad3信号通路参与PD的发生发展过程。希望将来能以TGF-β1/Smad3信号通路为切入点,探讨该通路的异常调控对PD脑铁代谢相关蛋白表达及铁水平的影响,并探讨TGF-β1信号对多巴胺能神经元氧化应激调控的机制,这对揭示PD发病机制、寻找有效的治疗方法具有重要意义。
Abstract: Parkinson’s disease (PD), which is one of neurodegenerative diseases, is a serious threat to human health. So far there has been no special treatment for it. PD onset is closely associated with the disorders of iron metabolism and its inducing and mediating oxidative stress response in the brain. The mechanism of its regulation is still elusive. Recently it was found that transforming growth factor-β1 (TGF-β1) can down-regulate the expression of ferritin heavy chain (FHC) and lead to cell labile iron increasing. It was found that TGF-β1/Smads signaling pathway could regulate cellular iron transport and metabolic balance by regulating hepcidin (Hep) expression in the hemochromatosis research. This review focused on the possible mechanism of TGF-β1/Smads signaling pathway involving iron metabolism and oxidative stress regulation and proposed a medical hypothesis: TGF-β1/Smad3 signaling pathway might participate in the process of PD de-velopment. It is expected that the experiment will be performed to explore the effect of abnormal regulation of this signaling pathway on the iron metabolism protein expressions and iron levels in PD, and to investigate regulatory mechanism of the TGF-β1 signaling on oxidative stress in dopa-minergic neurons. It will be of great significance to reveal the mechanism of PD, and to find effective treatments for it.

文章引用: 于永鹏. 假说:TGF-β1/Smad3信号通路参与帕金森病的发生发展[J]. 自然科学, 2015, 3(2): 19-25. http://dx.doi.org/10.12677/OJNS.2015.32004

参考文献

[1] Zhang, K.H., Tian, H.Y., Gao, X., et al. (2009) Ferritin heavy chain-mediated iron homeostasis and subsequent increased reactive oxygen species production are essential for epithelial-mesenchymal transition. Cancer Research, 69, 5340-5348.
[2] Milward, E., Johnstone, D., Trinder, D., et al. (2007) The nexus of iron and inflammation in hepcidin regulation: SMADs, STATs, and ECSIT. Hepatology, 45, 253-256.
[3] Yang, W.H., Deng, Y.T., Hsieh, Y.P., Wu, K.J. and Kuo, M.Y. (2015) NADPH oxidase 4 mediates TGFβ1-induced CCN2 in gingival fibroblasts. Journal of Dental Research, pii: 0022034515580986.
[4] Oruqaj, G., Karnati, S., Vijayan, V., Kotarkonda, L.K., Boateng, E., Zhang, W., Ruppert, C., Günther, A., Shi, W, and Baumgart-Vogt, E. (2015) Compromised peroxisomes in idiopathic pulmonary fibrosis, a vicious cycle inducing a higher fibrotic response via TGF-β signaling. Proceedings of the National Academy of Sciences of the United States of America, 112, E2048-2057.
[5] Yang, Y., Kim, B., Park, Y.K., Koo, S.I. and Lee, J.Y. (2015) Astaxanthin prevents TGFβ1-induced pro-fibrogenic gene expression by inhibiting Smad3 activation in hepatic stellate cells. Biochimica et Biophysica Acta (BBA)—General Subjects, 1850, 178-185.
[6] Liu, R.M. and Gaston Pravia, K.A. (2010) Oxidative stress and glutathione in TGF-beta-mediated fibrogenesis. Free Radical Biology and Medicine, 48, 1-15.
[7] Yu, Y.P., Ju, W.P., Li, Z.G., et al. (2010) Acupuncture inhibits oxidative stress and rotational behavior in 6-hydroxydopamine lesioned rat. Brain Research, 1336, 58-65.
[8] Zecca, L., Youdim, M.B., Riederer, P., Connor, J.R. and Crichton, R.R. (2004) Iron, brain ageing and neurodegenerative disorders. Nature Reviews Neuroscience, 5, 863-873.
[9] Vila, M. and Przedborski, S. (2004) Genetic clues to the pathogenesis of Parkinson’s disease. Nature Medicine, 10, S58-S62.
[10] Wypijewska, A., Galazka-Friedman, J., Bauminger, E.R., Wszolek, Z.K., Schweitzer, K.J., Dickson, D.W., Jaklewicz, A., Elbaum, D. and Friedman, A. (2010) Iron and reactive oxygen species activity in parkinsonian substantia nigra. Parkinsonism & Related Disorders, 16, 329-333.
[11] Ke, Y. and Ming, Q.Z. (2003) Iron misregulation in the brain: A primary cause of neurodegenerative disorders. The Lancet Neurology, 2, 246-253.
[12] Song, N., Wang, J., Jiang, H. and Xie, J. (2010) Ferroportin 1 but not hephaestin contributes to iron accumulation in a cell model of Parkinson’s disease. Free Radical Biology & Medicine, 48, 332-341.
[13] Jiang, H., Song, N., Xu, H., Zhang, S., Wang, J. and Xie, J. (2010) Up-regulation of divalent metal transporter 1 in 6-hydroxydopamine intoxication is IRE/IRP dependent. Cell Research, 20, 345-356.
[14] Wang, J., Jiang, H. and Xie, J.X. (2007) Ferroportin1 and hephaestin are involved in the nigral iron accumulation of 6-OHDA-lesioned rats. European Journal of Neuroscience, 25, 2766-2772.
[15] Nagatsu, T., Mogi, M., Ichinose, H. and Togari, A. (2000) Changes in cytokines and neurotrophins in Parkinson’s disease. Journal of Neural Transmission. Supplementum, 60, 277-290.
[16] Rota, E., Bellone, G., Rocca, P., Bergamasco, B., Emanuelli, G. and Ferrero, P. (2006) Increased intrathecal TGF-beta1, but not IL-12, IFN-gamma and IL-10 levels in Alzheimer’s disease patients. Neurological Sciences, 27, 33-39.
[17] Buss, A., Pech, K., Kakulas, B.A., Martin, D., Schoenen, J., Noth, J. and Brook, G.A. (2008) TGF-beta1 and TGF- beta2 expression after traumatic human spinal cord injury. Spinal Cord, 46, 364-371.
[18] Ilzecka, J., Stelmasiak, Z. and Dobosz, B. (2002) Transforming growth factor-beta 1 (TGF-beta 1) in patients with amyotrophic lateral sclerosis. Cytokine, 20, 239-243.
[19] Krupinski, J., Kumar, P., Kumar, S. and Kaluza, J. (1996) Increased expression of TGF-beta 1 in brain tissue after ischemic stroke in humans. Stroke, 27, 852-857.
[20] Li, X., Miyajima, M., Jiang, C. and Arai, H. (2007) Expression of TGF-betas and TGF-beta type II receptor in cerebrospinal fluid of patients with idiopathic normal pressure hydrocephalus. Neuroscience Letters, 413, 141-144.
[21] Sánchez-Capelo, A., Colin, P., Guibert, B., Biguet, N.F. and Mallet, J. (2003) Transforming growth factor beta1 overexpression in the nigrostriatal system increases the dopaminergic deficit of MPTP mice. Molecular and Cellular Neuroscience, 23, 614-625.
[22] Tapia-González, S., Giráldez-Pérez, R.M., Cuartero, M.I., Casarejos, M.J., Mena, M.Á., Wang, X.F. and Sánchez- Capelo, A. (2011) Dopamine and α-synuclein dysfunction in Smad3 null mice. Molecular Neurodegeneration, 6, 72.
[23] Wang, Y. and Symes, A.J. (2010) Smad3 deficiency reduces neurogenesis in adult mice. Journal of Molecular Neuroscience, 41, 383-396.
[24] Katsuno, M., Adachi, H., Banno, H., Suzuki, K., Tanaka, F. and Sobue, G. (2011) Transforming growth factor-β signaling in motor neuron diseases. Current Molecular Medicine, 11, 48-56.
[25] Wyss-Coray, T. (2006) TGF-Beta pathway as a potential target in neurodegeneration and Alzheimer’s. Current Alzheimer Research, 3, 191-195.
[26] Caraci, F., Battaglia, G., Bruno, V., Bosco, P., Carbonaro, V., Giuffrida, M.L., Drago, F., Sortino, M.A., Nicoletti, F. and Copani, A. (2011) TGF-β1 pathway as a new target for neuroprotection in Alzheimer’s disease. CNS Neuroscience & Therapeutics, 17, 237-249.
[27] Horino, T., Ito, H., Yamaguchi, T., Furihata, M. and Hashimoto, K. (2005) Suppressive effects of iron on TGF-beta1 production by renal proximal tubular epithelial cells. Nephron Experimental Nephrology, 100, e1-e10.
[28] Lo, J. and Hurta, R.A. (2000) Transforming growth factor beta1 selectively regulates ferritin gene expression in malignant H-ras-transformed fibrosarcoma cell lines. Biochemistry and Cell Biology, 78, 527-535.
[29] Takayama, Y. and Mizumachi, K. (2010) Inhibitory effect of lactoferrin on hypertrophic differentiation of ATDC5 mouse chondroprogenitor cells. BioMetals, 23, 477-484.
[30] Rathore, K.I., Redensek, A. and David, S. (2012) Iron homeostasis in astrocytes and microglia is differentially regulated by TNF-α and TGF-β1. Glia, 60, 738-750.
[31] Zhang, H., Jiang, Z., Chang, J., Li, X., Zhu, H., Lan, H.Y., Zhou, S.F. and Yu, X. (2009) Role of NAD(P)H oxidase in transforming growth factor-beta1-induced monocyte chemoattractant protein-1 and interleukin-6 expression in rat renal tubular epithelial cells. Nephrology (Carlton), 14, 302-310.
[32] Michaeloudes, C., Sukkar, M.B., Khorasani, N.M., Bhavsar, P.K. and Chung, K.F. (2011) TGF-β regulates Nox4, MnSOD and catalase expression, and IL-6 release in airway smooth muscle cells. AJP: Lung Cellular and Molecular Physiology, 300, L295-L304.
[33] Kleinschnitz, C., Grund, H., Wingler, K., Armitage, M.E., Jones, E., Mittal, M., Barit, D., Schwarz, T., Geis, C., Kraft, P., Barthel, K., Schuhmann, M.K., Herrmann, A.M., Meuth, S.G., Stoll, G., Meurer, S., Schrewe, A., Becker, L., Gailus-Durner, V., Fuchs, H., de Klopstock, T., Angelis, M.H., Jandeleit-Dahm, K., Shah, A.M., Weissmann, N. and Schmidt, H.H. (2010) Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration. PLoS Biology, 8, e1000479.