材料化学前沿  >> Vol. 3 No. 2 (April 2015)

化学气相沉积法制备氧化锌纳米结构的研究进展
Research Progress on ZnO Nanostructures by CVD

DOI: 10.12677/AMC.2015.32004, PDF, HTML, XML, 下载: 3,769  浏览: 26,456  科研立项经费支持

作者: 宋欢欢, 王 轩, 宋 礼, 陈 露, 张永平:西南大学材料与能源学部,重庆

关键词: ZnOCVD纳米结构压电器件ZnO Chemical Vapor Deposition Nanostructures Piezoelectric Device

摘要: 纳米结构氧化锌作为一种新型的半导体材料,在光电和压电器件方面具有广阔的应用前景。本文针对化学气相沉积的工艺方法,评述了不同的氧化锌纳米结构的相关制备方法,结构形貌及其独特性能,力求详细地概述氧化锌纳米结构研究的最新进展。针对氧化锌纳米结构的研究现状以及存在问题,展望了未来ZnO纳米材料的研究趋势。
Abstract: Nanostructured ZnO, as a new type of semiconductor material, has found extensively application in optoelectronic and piezoelectric devices. This paper reviews the different preparation techniques of ZnO nanostructures using the chemical vapor deposition methods, its corresponding morphologies, and its unique properties. We endeavor to summary the recent research progress on the ZnO nanostructures. Finally, we also prospect the future development trends about the investigation of ZnO nanostructures.

文章引用: 宋欢欢, 王轩, 宋礼, 陈露, 张永平. 化学气相沉积法制备氧化锌纳米结构的研究进展[J]. 材料化学前沿, 2015, 3(2): 24-44. http://dx.doi.org/10.12677/AMC.2015.32004

参考文献

[1] Huang, M.H., Mao, S., Feick, H., Yan, H.Q., Wu, Y.Y., Kind, H., Weber, E., Russo, R. and Yang, P.D. (2001) Room-temperature ultraviolet nanowire nanolasers. Science, 292, 1897-1899.
[2] Huang, Y.H., Zhang, Y., Liu, L., Fan, S.S., Wei, Y. and He, J. (2006) Controlled synthesis and field emission properties of ZnO nanostructures with different morphologies. Journal of Nanoscience and Nanotechnology, 6, 787-790.
[3] Zhang, Y., Huang, Y.H., He, J., Dai, Y., Zhang, X.M., Liu, J. and Liao, Q.L. (2006) Quasi one dimensional ZnO nanostructures fabricated without catalyst at lower temperature. Frontiers of Physics in China, 1, 72-84.
[4] Xu, C.K., Xu, G.D., Liu, Y.K. and Wang, G.G. (2002) A simple and novel route for the preparation of ZnO nanorods. Solid State Communications, 22, 175-179.
[5] Li, Y.B., Bando, Y., Sato, T. and Kurashima, K. (2002) ZnO nanobelts grown on Si substrate. Applied Physics Letters, 81, 144-146.
[6] Huang, H., Yang, S., Gong, J., Liu, H.W., Duan, J.H., Zhao, X.N. and Zhang, R. (2005) Controllable assembly of aligned ZnO nanowires/belts arrays. Journal of Physics Chemical B, 109, 20746-20750.
[7] Huang, M.H., Wu, Y.Y., Feick, H., Tran, N., Weber, E. and Yang, P.D. (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Advanced Materials, 13, 113-116.
[8] Yang, P.D., Yan, H.Q., Mao, S., Russo, R., Johnson, J., Saykally, R., Morris, N., Pham, J., He, R. and Choi, H.J. (2002) Controlled growth of ZnO nanowires and their optical properties. Advanced Functional Materials, 12, 323-331.
[9] Li, S.Y., Lee, C.Y. and Tseng, T.Y. (2003) Copper-catalyzed ZnO nanowires on silicon (100) grown by vapor-liquid-solid process. Journal of Crystal Growth, 247, 357-362.
[10] Wang, F.X., Cai, X.L., Yan, D.W., Zhu, Z.M. and Gu, X.F. (2013) Fabrication and photoluminescence of caltrop-like ZnO nanostructures on silicon substrate. Materials Letters, 112, 133-135.
[11] Wang, F.X., Yao, Y., Yan, D.W., Zhu, Z.M. and Gu, X.F. (2014) Synthesis and optical properties of pencil-like and shuttle-like ZnO microrods. Applied Physics A, 116, 1173-1179.
[12] Zhou, M.J., Zhu, H.J., Jiao, Y., Rao, Y.Y., Hark, S.K., Liu, Y., Peng, L.M. and Li, Q. (2009) Optical and electrical properties of Ga-doped ZnO nanowire arrays on conducting substrates. Journal of Physical Chemistry C, 113, 8945- 8947.
[13] Mohanta, A., Simmons Jr., J.G., Everitt, H.O., Shen, G., Kim, S.M. and Kung, P. (2014) Effect of pressure and Al doping on structural and optical properties of ZnO nanowires synthesized by chemical vapor deposition. Journal of Luminescence, 146, 470-474.
[14] Wu, J.J. and Liu, S.C. (2002) Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition. Advanced Materials, 14, 215-218.
[15] Lee, C.H. and Kim, D.W. (2014) Preparation of Al doped ZnO thin films by MOCVD using ultrasonic atomization. Journal of Electroceramics, 33, 12-16.
[16] Kim, S.W., Fujita, S., Park, H.K., Yang, B.Y., Kim, H.K. and Yoon, D.H. (2006) Growth of ZnO nanostructures in a chemical vapor deposition process. Journal of Crystal Growth, 292, 306-310.
[17] Biswas, P., Kundu, S., Banerji, P. and Bhunia, S. (2013) Super rapid response of humidity sensor based on MOCVD grown ZnO nanotips array. Sensors and Actuators B, 178, 331-338.
[18] Park, W.I., Kim, D.H., Jung, S.W. and Yi, G.C. (2002) Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods. Applied Physics Letters, 80, 4232-4234.
[19] Park, W., Yi, G.C., Kim, M. and Pennycook, S.J. (2003) Quantum confinement observed in ZnO-ZnMgO nanorod heterostructures. Advanced Materials, 15, 526-529.
[20] Jeong, M.C., Oh, B.Y., Lee, W. and Myoung, J.M. (2004) Comparative study on the growth characteristics of ZnO nanowires and thin films by metalorganic chemical vapor deposition. Journal of Crystal Growth, 268, 149-154.
[21] Park, J.Y., Oh, H., Kim, J.J. and Kim, S.S. (2006) Growth of ZnO nanorods via metal organic chemical vapor deposition and their electrical properties. Journal of Crystal Growth, 287, 145-148.
[22] Sanchez-Valencia, J.R., Alcaire, M., Romero-Gomez, P., Macias-Montero, M., Aparicio, F.J., Borras, A., Gonzalez-Elipe, A.R. and Barranco, A. (2004) Oxygen optical sensing in gas and liquids with nanostructured ZnO thin films based on exciton emission detection. Journal of Physical Chemistry C, 118, 9852-9859.
[23] Bekermann, D., Gasparotto, A., Barreca, D., Bovo, L., Devi, A., Fischer, R.A., Lebedev, O.I., Maccato, C., Tondello, E. and Tendeloo, G.V. (2010) Highly oriented ZnO nanorod arrays by a novel plasma chemical vapor deposition process. Crystal Growth & Design, 10, 2011-2018.
[24] Chang, P.C., Fan, Z.Y., Wang, D.W., Tseng, W.Y., Chiou, W.A., Hong, J. and Lu, J.G. (2004) ZnO nanowires synthesized by vapor trapping CVD method. Chemistry of Materials, 16, 5133-5137.
[25] Dai, Y., Zhang, Y., Bai, Y.Q. and Wang, Z.L. (2003) Bicrystalline zinc oxide nanowires. Chemical Physics Letters, 375, 96-101.
[26] Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001) Nanobelts of semiconducting oxides. Science, 291, 1947-1949.
[27] Wei, Y.G., Ding, Y., Li, C., Xu, S., Ryo, J.H., Dupuis, R., Sood, A.K., Polla, D.L. and Wang, Z.L. (2008) Growth of vertically aligned ZnO nanobelt arrays on GaN substrate. Journal of Physical Chemistry C, 112, 18935-18937.
[28] Deng, R., Zhang, X.T., Zhang, E., Liang, Y., Liu, Z., Xu, H.Y. and Hark, S.K. (2007) Planar defects in Sn-doped single-crystal ZnO nanobelts. Journal of Physical Chemistry C, 111, 13013-13015.
[29] Lin, Y.F., Jian, W.B., Wang, C.P., Suen, Y.W., Wu, Z.Y., Chen, F.R., Kai, J.J. and Lin, J.J. (2007) Contact to ZnO and intrinsic resistances of individual ZnO nanowires with a circular cross section. Applied Physics Letters, 90, Article ID: 223117.
[30] Xing, Y.J., Xi, Z.H., Zhang, X.D., Song, J.H., Wang, R.M., Xu, J., Xue, Z.Q. and Yu, D.P. (2005) Thermal evaporation synthesis of zinc oxide nanowires. Applied Physics A, 80, 1527-1530.
[31] Abd Aziz, S.N.Q.A., Pung, S.Y. and Lockman, Z. (2014) Growth of Fe-doped ZnO nanorods using aerosol-assisted chemical vapour deposition via in situ doping. Applied Physics A, 116, 1801-1811.
[32] Yu, K., Zhang, Y., Luo, L., Wang, W., Zhu, Z., Wang, J., Cui, Y., Ma, H. and Lu, W. (2004) Growth and optical properties of quadrangular zinc oxide nanorods on copper-filled porous silicon. Applied Physics A, 79, 443-446.
[33] Yu, K., Zhang, Y.S., Xu, R.L., Jiang, D.S., Luo, L.Q., Lia, Q., Zhu, Z.Q. and Lu, W. (2005) Field emission behavior of cuboid zinc oxide nanorods on zinc-filled porous silicon. Solid State Communications, 133, 43-47.
[34] Xing, Y.J., Xi, Z.H., Zhang, X.D., Song, J.H., Wang, R.M., Xu, J., Xue, Z.Q. and Yu, D.P. (2004) Nanotubular structures of zinc oxide. Solid State Communications, 129, 671-675.
[35] Jeong, J.S., Lee, J.Y., Cho, J.H., Suh, H.J. and Lee, C.J. (2005) Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method. Chemistry of Materials, 17, 2752-2756.
[36] Wu, G.S., Xie, T., Yuan, X.Y., Li, Y., Yang, L., Xiao, Y.H. and Zhang, L.D. (2005) Controlled syn-thesis of ZnO nanowires or nanotubes via sol-gel template process. Solid State Communications, 134, 485-489.
[37] Vayssieres, L., Keis, K., Hagfeldt, A. and Lindquist, S.E. (2001) Three-dimensional array of highly oriented crystalline ZnO microtubes. Chemistry of Materials, 13, 4395-4398.
[38] Cheng, J.P., Guo, R.Y. and Wang, Q.M. (2004) Zinc oxide single-crystal microtubes. Applied Physics Letters, 85, 5140-5142.
[39] Qi, J.J., Zhang, Y., Huang, Y.H., Liao, Q.L. and Liu, J. (2006) Doping and defects in the formation of single-crystal ZnO nanodisks. Applied Physics Letters, 89, Article ID: 252115.
[40] Lin, P.F., Ko, C.Y., Lin, W.T. and Lee, C.T. (2007) Effects of processing parameters on ultraviolet emission of in-doped ZnO nanodisks grown by carbothermal reduction. Materials Letters, 61, 1767-1770.
[41] Yu, D.S., Chen, Y.J., Li, B.J., Chen, X.D., Zhang, M.Q., Zhao, F.L. and Ren, S. (2007) Structural and lasing characteristics of ultrathin hexagonal ZnO nanodisks grown vertically on silicon-on-insulator substrates. Applied Physics Letters, 91, Article ID: 091116.
[42] Xu, C.K., Yang, K.K., Huang, L.W. and Wang, H. (2010) Vertically aligned ZnO nanodisks and their uses in bulk heterojunction solar cells. Journal of Renewable and Sustainable Energy, 2, Article ID: 053101.
[43] Park, J.H., Choi, Y.J. and Park, J.G. (2005) Synthesis of ZnO nanowires and nanosheets by an O2-assisted carbothermal reduction process. Journal of Crystal Growth, 280, 161-167.
[44] Kong, X.Y., Ding, Y., Yang, R.S. and Wang, Z.L. (2004) Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts. Science, 303, 1348-1351.
[45] Hughes, W.L. and Wang, Z.L. (2004) Formation of piezoelectric single-crystal ZnO nanorings and nanobows. Journal of American Chemistry Society, 126, 6703-6709.
[46] Zhai, T., Xie, S.L., Zhao, Y.F., Sun, X.F., Lu, X.H., Yu, M.H., Xu, M., Xiao, F.M. and Tong, Y.X. (2012) Controllable synthesis of hierarchical ZnO nanodisks for highly photocatalytic activity. CrystEngComm, 14, 1850-1855.
[47] Wang, X.D., Summers, C.J. and Wang, Z.L. (2004) Mesoporous single-crystal ZnO nanowires epitaxially sheathed with Zn2SiO4. Advanced Materials, 16, 1215-1218.
[48] Wang, Z.L. (2004) Nanostructures of zinc oxide. Materials Today, 6, 26-33.
[49] He, J., Huang, Y.H., Zhang, Y., Gu, Y.S., Ji, Z. and Zhou, C. (2006) Large-scale synthesis, microstructure and growth mechanism of self-assembled core-shell ZnO/SiOx nanowires. Materials Letters, 60, 150-153.
[50] Amiri, G., Souissi, A., Hanèche, N., Vilar, C., Lusson, A., Sallet, V. and Galtier, P. (2013) Synthesis and characterization of core-shell ZnO/ZnSe nanowires grown by MOCVD. Physica Status Solidi B, 250, 2132-2136.
[51] Chang, K.W. and Wu, J.J. (2005) Formation of well-aligned ZnGa2O4 nanowires from Ga2O3/ZnO core-shell nanowires via a Ga2O3/ZnGa2O4 epitaxial relationship. Journal of Physics Chemical B, 109, 13572-13577.
[52] Ding, Y., Kong, X.Y. and Wang, Z.L. (2004) Interface and defect structures of Zn-ZnO core-shell heteronanobelts. Applied Physics Letters, 95, 306-308.
[53] Kong, X.Y., Ding, Y. and Wang, Z.L. (2004) Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes. Journal of Physics Chemical B, 108, 570-574.
[54] Wu, C.Y., Hsu, H.C., Cheng, H.M., Yang, S. and Hsieh, W.F. (2006) Structural and optical properties of ZnO nanosaws. Journal of Crystal Growth, 287, 189-193.
[55] Yang, Y., Qi, J.J., Liao, Q.L., Zhang, Y., Tang, L.D. and Qin, Z. (2008) Synthesis and characterization of Sb-doped ZnO nanobelts with single-side zigzag boundaries. Journal of Physics Chemical C, 112, 17916-17919.
[56] Hussain, S.G., Liu, D.M., Huang, X.T., Sulieman, K.M., Liu, J.P., Liu, H.R. and Rasool, R.U. (2007) Synthesis and optical properties of heterostructured ZnO: S/ZnO nanosaws. Journal of Physics D: Applied Physics, 40, 7662-7668.
[57] Yan, H.Q., He, R.R., Johnson, J., Law, M., Saykally, R.J. and Yang, P.D. (2003) Dendritic nanowire ultraviolet laser array. Journal of American Chemistry Society, 125, 4728-4729.
[58] Yu, K., Zhang, Q.X., Wu, J., Li, L.J., Xu, Y.E., Huang, S.H. and Zhu, Z.Q. (2008) Growth and optical applications of centimeter-long ZnO nanocombs. Nano Research, 1, 221-228.
[59] Pan, Z.W., Mahurin, S.M., Dai, S. and Lowndes, D.H. (2005) Nanowire array gratings with ZnO combs. Nano Letters, 5, 723-727.
[60] Xie, S.F., Liu, Y.Y., Chen, Z.L., Chen, X.D. and Wang, X.Y. (2013) Superior photocatalytic properties of phosphorous doped ZnO nanocombs. RSC Advances, 3, 26080-26085.
[61] Zhou, S.M., Yuan, H.L., Liu, L.S., Chen, X.L., Lou, S.Y., Hao, Y.M., Yuan, R.J. and Li, N. (2010) Magnetic properties of Ni-doped ZnO nanocombs by CVD approach. Nanoscale Research Letters, 5, 1284-1288.
[62] Feng, Q.J., Wang, J., Liu, S., Xu, R.Z., Tang, K., Liu, Y., Lu, J.Y. and Li, M.K. (2013) Fabrication and characterization of highly ordered phosphorus-doped ZnO nanocombs. Journal of Physics and Chemistry of Solids, 74, 476-479.
[63] Fan, D.H., Zhang, R., Zhu, Y.F. and Peng, H.R. (2012) Size dependence of surface optical mode and electron-phonon coupling in ZnO nanocombs. Physica B, 407, 3510-3514.
[64] Xu, T.F., Ji, P.F., He, M. and Li, J.Y. (2012) Growth and structure of pure ZnO micro/nanocombs. Journal of Nanomaterials, 2012, Article ID: 797935.
[65] Comjani, F., Willer, U., Kontermann, S. and Schade, W. (2013) Modelling the growth of ZnO nanocombs based on the piezoelectric effect. AIP Aavances, 3, Article ID: 102102.
[66] Sun, Y.K. and Vincent, R. (2011) Structural characterization of CVD-grown ZnO nanocombs. Journal of the Korean Physical Society, 59, 60-64.
[67] Huang, Y.H., Zhang, Y., Bai, X.D., He, J., Liu, J. and Zhang, X.M. (2006) Bicrystalline zinc oxide nanocombs. Acta Physica Sinica, 55, 1491-1496.
[68] Fan, H.J., Scholz, R., Kolb, F.M., Zacharias, M. and Gosele, U. (2004) Growth mechanism and characterization of zinc oxide microcages. Solid State Communications, 130, 517-521.
[69] Leung, Y.H., Tam, K.H., Djurisic, A.B., Xie, M.H., Chan, W.K., Lu, D. and Ge, W.K. (2005) ZnO nanoshells: Synthesis, structure, and optical properties. Journal of Crystal Growth, 283, 134-140.
[70] Wang, S.L., Jia, X., Jiang, P., Fang, H. and Tang, W.H. (2010) Large-scale preparation of chestnut-like ZnO and Zn-ZnO hollow nanostructures by chemical vapor deposition. Journal of Alloys and Compounds, 502, 118-122.
[71] Jiang, Z.Y., Xie, Z.X., Zhang, X.H., Lin, S.C., Xu, T., Xie, S.Y., Huang, R.B. and Zheng, L.S. (2005) Synthesis of single-crystalline ZnO polyhedral submicrometer-sized hollow beads using laser-assisted growth with ethanol droplets as soft templates. Advanced Materials, 16, 904-907.
[72] Gao, P.X. and Wang, Z.L. (2003) Mesoporous polyhedral cages and shells formed by self-assembly of ZnO nanocrystals. Journal of American Chemistry Society, 125, 11299-11305.
[73] Xia, X.H., Zhu, L.P., Ye, Z.Z., Yuan, G.D., Zhao, B.H. and Qian, Q. (2005) Novel ZnO microballs synthesized via pyrolysis of zinc-acetate in oxygen atmosphere. Journal of Crystal Growth, 282, 506-512.
[74] Zhao, M., Wang, Z. and Mao, S. (2004) Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope. Nano Letters, 4, 587-590.
[75] Yang, Y., Qi, J.J., Gu, Y.S., Wang, X.Q. and Zhang, Y. (2009) Piezoelectric strain sensor based on single bridged ZnO wires. Physics Status Solidi RRL, 3, 269-271.
[76] Araneo, R., Rinaldi, A., Notargiacomo, A., Bini, F., Pea, M., Celozzi, S., Marinozzi, F. and Lovat, G. (2014) Design concepts, fabrication and advanced characterization methods of innovative piezoelectric sensors based on ZnO nanowires. Sensors, 14, 23539-23562.
[77] Song, J., Zhou, J. and Wang, Z. (2006) Piezoelectric and semiconductor coupled power generating process of a single ZnO belt/wire. Nano Letters, 6, 1656-1662.
[78] Wang, Z.L. and Song, J. (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242-246.
[79] Wang, X.D., Song, J.H., Liu, J. and Wang, Z.L. (2007) Direct-current nanogenerator driven by ultrasonic ware. Science, 316, 102-105.
[80] Chang, W.Y., Fang, T.H. and Tsai, J.H. (2015) Electromechanical and photoluminescence properties of Al-doped ZnO nanorods applied in piezoelectric nanogenerators. Journal of Low Temperature Physics, 178, 174-187.
[81] Hasan, M.R., Baek, S.H., Seong, K.S., Kim, J.H. and Park, I.K. (2015) Hierarchical ZnO nanorods on Si micropillar arrays for performance enhancement of piezoelectric nanogenerators. ACS Applied Materials & Interfaces, 7, 5768- 5774.
[82] Joshi, S., Nayak, M.M. and Rajanna, K. (2014) Evaluation of transverse piezoelectric coefficient of ZnO thin films deposited on different flexible substrates: a comparative study on the vibration sensing performance. ACS Applied Materials & Interfaces, 6, 7108-7116.
[83] Nour, E.S., Chey, C.O., Willander, M. and Nur, O. (2015) A flexible anisotropic self-powered piezoelectric direction sensor based on double sided ZnO nanowires configuration. Nanotechnology, 26, Article ID: 095502.
[84] Ameen, S., Akhtar, M.S., Song, M.W. and Shin, H.S. (2012) Vertically aligned ZnO nanorods on hot filament chemical vapor deposition grown graphene oxide thin film substrate: Solar energy conversion. ACS Applied Materials & Interfaces, 4, 4405-4412.
[85] Feng, Z.Z., Jia, R., Dou, B.F., Li, H.F., Jin, Z., Liu, X.Y., Li, F., Zhang, W. and Wu, C.Y. (2015) Fabrication and properties of ZnO nanorods within silicon nanostructures for solar cell application. Applied Physics Letters, 106, Article ID: 053118.
[86] Alivov, Y.I., van Nostrand, J.E., Look, D.C., Chukichev, M.V. and Ataev, B.M. (2003) Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Applied Physics Letters, 83, 2943-2945.
[87] Tseng, Z.L., Kao, P.C., Yang, C.S., Juang, Y.D., Kuo, Y.M. and Chua, S.Y. (2011) Transparent conducting Ti-doped ZnO thin films applied to organic light-emitting diodes. Journal of the Electrochemical Society, 158, 133-136.
[88] Shi, Z.F., Zhang, Y.T., Cui, X.J., Zhuang, S.W., Wu, B., Jiang, J.Y., Chu, X.W., Dong, X., Zhang, B.L. and Du, G.T. (2015) Epitaxial growth of vertically aligned ZnO nanowires for bidirectional direct-current driven light-emitting diodes applications. CrystEngComm, 17, 40-49.
[89] Richters, J.P., Dev, A., Ronning, C., Gutowski, J. and Voss, T. (2014) Functional ZnO/polymer core-shell nanowires fabricated by oxidative chemical vapour deposition. Journal of Physics D: Applied Physics, 47, Article ID: 394004.
[90] Pea, M., Maiolo, L., Pilloton, R., Rinaldi, A., Araneo, R., Giovine, E., Orsini, A. and Notargiacomo, A. (2014) ZnO nanowires strips growth: Template reliability and morphology study. Microelectronic Engineering, 121, 147-152.
[91] Bai, S.N. (2012) Growth and properties of ZnO nanowires synthesized by a simple hydrothermal method. Journal of Materials Science: Materials in Electronics, 23, 398-402.
[92] Song, Z.C., Wei, H.L., Liu, Y.H., Wang, J., Long, H., Wang, H.N., Qin, P.L., Zeng, W. and Fang, G.J. (2014) Enhanced field emission from aligned ZnO nanowires grown on a graphene layer with hydrothermal method. IEEE Transactions on Nanotechnology, 13, 167-171.
[93] Fernández, A., Fan, J.D. and Cabot, A. (2014) Highly crystalline hydrothermal ZnO nanowires as photoanodes in DSCs. International Journal of Nanotechnology, 11, 747-757.
[94] Solís-Pomar, F., Martínez, E., Meléndrez, M.F. and Pérez-Tijerina, E. (2011) Growth of vertically aligned ZnO nanorods using textured ZnO films. Nanoscale Research Letters, 6, 524.
[95] Chakraborty, R., Das, U., Mohanta, D. and Choudhury, A. (2009) Fabrication of ZnO nanorods for optoelectronic device applications. Indian Journal of Physics, 83, 553-558.
[96] Cao, Y.L., Jia, D.Z., Wang, R.Y. and Luo, J.M. (2013) Rapid one-step room-temperature solid-state synthesis and formation mechanism of ZnO nanorods as H2S-sensing materials. Solid-State Electronics, 82, 67-71.
[97] Aziz, S.N.Q.A.A., Pung, S.Y., Ramli, N.N. and Lockman, Z. (2014) Growth of ZnO nanorods on stainless steel wire using chemical vapour deposition and their photocatalytic activity. The Scientific World Journal, 2014, Article ID: 252851.
[98] Ranjusha, R., Sreeja, R., Mini, P.A., Subramanian, K.R.V., Nair, S.V. and Balakrishnan, A. (2012) Electrical and optical characteristics of surface treated ZnO nanotubes. Materials Research Bulletin, 47, 1887-1891.
[99] Han, J.H., Liu, Z.F., Guo, K.Y., Wang, B., Zhang, X.Q. and Hong, T.T. (2015) High-efficiency photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube arrays. Applied Catalysis B: Environmental, 163, 179-188.
[100] Li, C.Q., Luo, L.T. and Xiong, G.W. (2009) Optical Properties of ZnO nanotubes and their photocatalytic activity for degradation of methyl orange. Chinese Journal of Catalysis, 30, 1058-1062.
[101] Zhou, X.F., Hu, Z.L., Fan, Y.Q., Chen, S., Ding, W.P. and Xu, N.P. (2008) Microspheric organization of multilayered ZnO nanosheets with hierarchically porous structures. Journal of Physics Chemistry C, 112, 11722-11728.
[102] Yousefi, R., Zak, A.K. and Mahmoudian, M.R. (2011) Growth and characterization of Cl-doped ZnO hexagonal nanodisks. Journal of Solid State Chemistry, 184, 2678-2682.
[103] Yoon, J.H. (2011) Formation of ZnO nanosheets by oxidizing Zn film. Journal of the Korean Physical Society, 59, 110-113.
[104] Yang, F., Liu, W.H., Wang, X.W., Zheng, J., Shi, R.Y., Zhao, H. and Yang, H.Q. (2012) Controllable low temperature vapor-solid growth and hexagonal disk enhanced field emission property of ZnO nanorod arrays and hexagonal nanodisk networks. ACS Applied Materials & Interfaces, 4, 3852-3859.
[105] Peng, Y., Xu, A.W., Deng, B., Antonietti, M. and Colfen, H. (2006) Polymer-controlled crystallization of zinc oxide hexagonal nanorings and disks. Journal of Physics Chemical B, 110, 2988-2993.
[106] Mai, W.J., Zhang, L., Gu, Y.D., Huang, S.Q., Zhang, Z.F., Lao, C.S., Yang, P.H., Qiang, P.F. and Chen, Z.W. (2012) Mechanical and electrical characterization of semiconducting ZnO nanorings by direct nano-manipulation. Applied Physics Letters, 101, Article ID: 081910.
[107] Yin, P. and Ling, B. (2008) Controlled-synthesis of ZnO nanorings. Chemical Journal of Chinese Universities, 29, 28- 32.
[108] Guo, Y.R., Yu, F.D., Fang, G.Z. and Pan, Q.J. (2013) Synthesis, structural characterization and photoluminescent properties of mesoporous ZnO by direct precipitation with lignin-phosphate quaternary ammonium salt. Journal of Alloys and Compounds, 552, 70-75.
[109] Abdullah, H., Ariyanto, N.P., Yuliarto, B., Asshaari, I., Omar, A. and Razali, M.Z. (2015) Influence of structural and chemical properties on electron transport in mesoporous ZnO-based dye-sensitized solar cell. Ionics, 21, 251-261.
[110] Wu, M.M., Shen, Y., Gu, F., Xie, Y.A., Zhang, J.C. and Wang, L.J. (2010) Preparation and photoelectric properties of mesoporous ZnO films. Journal of Sol-Gel Science and Technology, 53, 470-474.
[111] Wang, Y.Z., Zhu, S.P., Chen, X.R., Tang, Y.G., Jiang, Y.F., Peng, Z.G. and Wang, H.Y. (2014) One-step template-free fabrication of mesoporous ZnO/TiO2 hollow microspheres with enhanced photocatalytic activity. Applied Surface Science, 307, 263-271.
[112] Hong, M.H., Park, C.S., Seo, W.S., Lim, Y.S., Lee, J.K. and Park, H.H. (2013) Thermoelectric properties of Al-doped mesoporous ZnO thin films. Journal of Nanomaterials, 2013, Article ID: 131537.
[113] Inguva, S., Marka, S.K., Vijayaraghavan, R.K., McGlynn, E., Srikanth, V.V.S.S. and Mosnier, J.P. (2015) Crystalline ZnO/amorphous ZnO core/shell nanorods: Self-organized growth, structure, and novel luminescence. Journal of Physical Chemistry C, 119, 4848-4855.
[114] Ko, K.Y., Kang, H., Lee, W., Lee, C.W., Park, J., Lee, H.S., Im, S., Kim, H.G., Kim, S.H., Min, B.W. and Kim, H. (2015) Nitrogen-doped ZnO/n-Si core-shell nanowire photodiode prepared by atomic layer deposition. Materials Science in Semiconductor Processing, 33, 154-160.
[115] Zhang, F., Ding, Y., Zhang, Y., Zhang, X.L. and Wang, Z.L. (2012) Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. ACS Nano, 6, 9229-9236.
[116] Zang, W.L., Nie, Y.X., Zhu, D., Deng, P., Xing, L.L. and Xue, X.Y. (2014) Core-shell In2O3/ZnO nanoarray nanogenerator as a self-powered active gas sensor with high H2S sensitivity and selectivity at room temperature. Journal of Physical Chemistry C, 118, 9209-9216.
[117] Zhuo, R.F., Feng, H.T., Liang, Q., Li, H.J., Cheng, S., Geng, B.S., Xu, X.Y., Wang, J., Wu, Z.G., Yan, P.X. and Yue, G.H. (2008) Morphology-controlled synthesis, growth mechanism, optical and microwave absorption properties of ZnO nanocombs. Journal of Physics D: Applied Physics, 41, 1-13.
[118] Jeong, B., Kim, D.H., Park, E.J., Jeong, M.G., Kim, K.D., Seo, H.O., Kim, Y.D. and Uhm, S. (2014) ZnO shell on mesoporous silica by atomic layer deposition: Removal of organic dye in water by an adsorbent and its photocatalytic regeneration. Applied Surface Science, 307, 468-474.
[119] Zhai, H.J., Zheng, J.H., Yang, J.H., Liu, Y. and Gao, M. (2010) Optical properties of ZnO nanotubes. Crystal Research and Technology, 45, 647-650.