氢键的量子化学研究(一)
A Quantum Chemistry Study of Hydrogen Bonds (1)
DOI: 10.12677/JAPC.2015.42011, PDF, HTML, XML,  被引量 下载: 4,572  浏览: 14,467 
作者: 周光耀:北京科音自然科学研究中心,北京
关键词: 量子化学氢键电负性均衡原理氢键新概念Quantum Chemistry Hydrogen Bond Electronegativity Equalization Principle New Concept of H-Bond
摘要: 本文通过耦合簇CCSD等量子化学方法,对各种类型氢键选择有代表性分子进行了计算,还包括锂键、钠键和卤键,观察了形成氢键前后的MO和Δρ,认为它们有着共同的机制、本质,需要建立新的氢键概念。氢键新概念总的可表述为:氢键是分子内、分子间处于能级较高部位的电子(HOMO),在轨道对称性相符时,向能级较低部位(LUMO)偏移部分电子,形成了双方共享电子能量降低的较稳定静电作用体系。量子化学计算描述了这种现象和事实。用计算实例介绍了这种电子偏移的基本情况和氢键新概念具体细节。
Abstract: In this paper, the coupled cluster CCSD and other quantum chemistry methods are employed to study various kinds of representative hydrogen bond systems, as well as lithium bond, sodium bond and halogen bond systems; the MO and Δρ are observed before and after the formation of hydrogen bonds. We believe that these bonds have the common underlying mechanism, and a new concept about H-bond is needed to be established. The new concept of H-bond can be described as follows: When orbital symmetries are properly matched, the intramolecular or intermolecular electrons at high-energy level (HOMO) will partially transfer to lower energy regions (LUMO) and forms electron-shared, energy-reduced, relatively stable electrostatically interacting system. Quan- tum chemistry calculations faithfully described this phenomenon and fact. With practical calculation examples, the basic character of the electron transfer and the specific details of the new concept of H-bond are introduced.
文章引用:周光耀. 氢键的量子化学研究(一)[J]. 物理化学进展, 2015, 4(2): 84-101. http://dx.doi.org/10.12677/JAPC.2015.42011

参考文献

[1] The Gordon Research Group: The General Atomic and Molecular Electronic Structure System (GAMESS) is a general ab initio quantum chemistry package. http://www.msg.chem.iastate.edu/gamess/
[2] Lu, T. and Chen, F.W. (2012) Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33, 580-592.
[3] University of Illinois at Urbana-Champaign, VMD Visualar Molecular Dynamics. http://www.ks.uiuc.edu/Research/vmd/
[4] Parr, R.G., Donnelly, R.A., Levy, M. and Palke, W.E. (2007) Electrone-gativity equalization method: Parameterization and validation for large sets of organic, organohalogene and organometal molecule. International Journal of Molecular Sciences, 8, 572-582.
[5] Sanderson, R.T. (1951) An interpretation of bond lengths and a classification of bonds. Science, 114, 670-672.
[6] 周光耀 (1985) 关于电负性均衡原理. 化学学报, 43, 1-3.
[7] 周光耀 (2014) 范德华作用的量子化学研究(四). 物理化学进展, 3, 1-10.
[8] Misochko, E.Y., Benderskii, V.A., Goldschleger, A.U., Akimov, A.V. and Shestakov, A.F. (1995) Formation of the CH3-HF complex in reaction of thermal F atoms with CH4 in solid Ar. Journal of the American Chemical Society, 117, 11997.
[9] 王海燕, 曾艳丽, 孟令鹏, 郑世钧 (2005) 有关氢键理论研究的现状及前景. 河北师范大学学报(自然科学版), 29, 177-181.
[10] 吴志坚, 吴季怀 (2006) 二氢键. 大学化学, 26, 33-37.
[11] Stefov, V., Pejov, L. and Loptrajanov, B. (2003) Experimental and quantum chemical study of pyrrole self-association through N—H ⋯π hydrogen bonding. Journal of Molecular Structure, 649, 231-243.
[12] 李志锋, 朱元成, 左国防, 唐慧安, 李红玉 (2010) 反常蓝移单电子锂键Y…Li—CH3[Y=CH3, CH2CH3, CH(CH3)2,C(CH3)3]体系的结构与性质. 物理化学学报, 26, 429-435.
[13] Legon, A.C. (1999) Prereactive Complexes of Dihalogens XY with Lewis Bases B in the Gas Phase: A Systematic Case for the Halogen Analogue B small middle dot small middle dot small middle dotXY of the Hydrogen Bond B small middle dot small middle dot small middle dotHX. Angewandte Chemie International Edition (Engl.), 38, 2686- 2714.
[14] 李大庆 我科学家用高分辨原子力显微镜率先“看见”氢键. 光明网, 2013-11-23. http://tech.gmw.cn/2013-11/23/content_9579493.htm