智能电网  >> Vol. 5 No. 3 (June 2015)

并网下微电网调度策略研究
Scheduling Strategy for Micro Grid in Grid-Connected Mode

DOI: 10.12677/SG.2015.53013, PDF, HTML, XML, 下载: 2,081  浏览: 4,978  科研立项经费支持

作者: 王杏玄, 赵向阳:北京航空航天大学自动化科学与电气工程学院,北京;罗 文:江西仪能新能源微电网协同创新有限公司,江西 吉安

关键词: 微电网调度并网优先次序法Micro Grid Scheduling Strategy Grid-Connected Operation Priority Method

摘要: 传统电网的发电模式一般固定,按照等耗量微增率优化负荷经济分配,而微电网是由间歇性、随机性很大的新能源发电及不确定性负荷组成,如何制定有效的调度方法称为发展微电网的关键问题。本课题以含光伏、蓄电池、柴油发电机、可控制负荷、敏感负载的微电网为对象,研究其并网模式下的调度策略,提出基于电池的荷电状态(SOC)的优先次序法与双重粒子群优化算法,经过算例证明这两种策略的正确性与有效性,并对优化结果进行对比分析。
Abstract: The generation mode of the traditional grid is generally fixed; the optimization for economic load distribution is in accordance with the equal consumed energy ratio. While the micro grid is com-posed of the intermittent new energy generation and the load power of great uncertainty; how to formulate the effective scheduling method is the key problem of the development of the micro grid. This paper studies the Priority Method of Battery’s SOC (PMBC) and Dual Particle Swarm Optimi-zation (DPSO) algorithm aiming at scheduling strategy under grid connected mode, which is based on the micro grid with solar system, battery, diesel generator, controllable load, sensitive load. An example shows that the two strategies are correct and effective, and analysis and comparison of optimization results are conducted.

文章引用: 王杏玄, 赵向阳, 罗文. 并网下微电网调度策略研究[J]. 智能电网, 2015, 5(3): 100-110. http://dx.doi.org/10.12677/SG.2015.53013

参考文献

[1] 刘继春 (2010) 电力调度优化理论及其应用. 中国电力出版社, 北京.
[2] Zamora, R. (2014) Energy management and control algorithms for integration of energy storage within microgrid. 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istanbul, 1-4 June 2014, 1805-1810.
[3] Hasan, K.N., Haque, M.E., Negnevitsky, M. and Muttaqi, K.M. (2008) Control of energy storage interface with a bidirectional converter for photovoltaic systems. 2008 Australasian Universities Power Engineering Conference (AUPEC'08), Australasian, December 2008, 138-144.
[4] 娄素华, 等 (2005) 电力系统机组启优化问题的改进DPSO算法. 中国电机工程学报, 8, 30-35.
[5] 胡家声 (2004) 一种适合于电力系统机组组合问题的混合粒子群优化算法. 中国电机工程学报, 4, 24-30.
[6] 蔡超豪, 蔡元宇 (1997) 优化组合的遗传算法. 电网技术, 1, 44-51.
[7] 余廷芳, 林中达 (2009) 部分解约束算法在机组负荷优化组合中的应用. 中国电机工程学报, 2, 107-112.
[8] 李整, 谭文, 秦金磊 (2012) 一种用于机组组合问题的改进双重粒子群算法. 中国电机工程学报, 25, 189-195.
[9] Park, J.-B., Lee, K.-S., Shin, J.-R. and Lee, K.Y. (2005) A particle swarm optimization for economic dispatch with nonsmooth cost functions. IEEE Transactions on Power Systems, 1, 34-42.
[10] Dommel, H.W. and Tinney, W.F. (1968) Optimal power flow solution. IEEE Transactions on Power Apparatus and Systems, 87, 1866-1876.
[11] 罗朝春, 等 (2005) 电力市场日前交易计划的分布式协同算法. 电力系统自化, 11, 88-96.
[12] 陈眩姿, 赵向阳 (2013) 配电网规划中分布式电源的选址定容研究. 智能电网, 3, 153-158.
[13] 史俊 (2008) 基于粒子群算法的电网日调度问题研究. 硕士论文, 西安理工大学, 西安.
[14] 赵向阳, 段江曼 (2012) 微电网系统的调度策略及经济运行优化研究. 智能电网, 2, 99-107.