血必净对脓毒症大鼠皮质酮及肾上腺组织GRmRNA水平的影响
Xuebijing Regulate the Hypothalamic-Pituitary-Adrenal Axis and the Level of GRmRNA of Adrenal in Septic Rats
DOI: 10.12677/ACM.2015.52020, PDF, HTML, XML,  被引量 下载: 2,562  浏览: 7,732 
作者: 李宏山, 周洁平, 常玉坤, 王静怡:唐山市人民医院重症医学科,河北 唐山;刘淑正:唐山市第二医院重症医学科,河北 唐山
关键词: 血必净脓毒症盲肠结扎穿孔皮质酮GRmRNAXuebijing Sepsis CLP CORT GRmRNA
摘要: 目的:探讨在血必净干预下,脓毒症大鼠血浆皮质酮(CORT)水平以及肾上腺组织糖皮质激素受体(GR mRNA)水平的变化,明确血必净对脓毒症大鼠CORT及GR mRNA的调节作用。方法:选用健康雄性SD大鼠40只,随机分为正常对照组(Normal group),假手术组(Sham group),模型组(Sepsis group)和血必净治疗组(XBJ group)四个组,采用经典的盲肠结扎穿孔法(CLP)制作SD大鼠脓毒症模型。CLP术后6小时处死动物,利用放射免疫法检测血浆皮质酮(CORT)水平;RT-PCR法检测肾上腺组织GRmRNA水平。结果:Sepsis组血浆CORT含量(29.74 ± 1.65 ng/ml)明显高于Normal组(7.56 ± 0.89 ng/ml, P < 0.01)及Sham组(13.27 ± 1.31 ng/ml, P < 0.01);XBJ组血浆CORT含量(19.27 ± 1.85 ng/ml)明显低于Sepsis组(P < 0.01);Normal组与Sham组之间相比无统计学差异(P > 0.05);Sepsis组肾上腺组织GR mRNA含量(0.80 ± 0.11)明显低于Normal组(1.44 ± 0.07, P < 0.01)和Sham组(1.15 ± 0.11, P < 0.01);XBJ组肾上腺组织GR mRNA含量(1.08 ± 0.10)和Sepsis组之间相比无统计学差异(P > 0.05)。结论:脓毒症早期大鼠血浆CORT的水平是升高的,而肾上腺组织GRmRNA水平是较低的;血必净干预后能够降低血浆CORT的水平并且一定程度上能够提高肾上腺组织GRmRNA的水平,减轻脓毒症大鼠的过度应激状态,改善脓毒症大鼠的感染中毒症状。
Abstract: Objective: To investigate the change of CORT and the level of GRmRNA of adrenal in CLP induced septic rats which were treated by Xuebijing, identify that Xuebijing can regulate the CORT and GRmRNA. Methods: 40 male rats were divided randomly into normal control group, sham group, saline group (Sepsis group), Xuebijing for treatment group. The model of sepsis was made by CLP. We observe the clinical manifestation of animal after CLP. We use the radio-immunity method to detect the levels of CORT; using the RT-PCR method to measure the level of GRmRNA in adrenal. Results: In Sepsis group, the plasma CORT concentration (29.74 ± 1.65 ng/ml) was significantly higher than that in the normal control group (7.56 ± 0.89 ng/ml, P < 0.01) and Sham group (13.27 ± 1.31 ng/ml, P < 0.01). In XBJ group, plasma CORT concentration (19.27 ± 1.85 ng/ml) was significantly lower than that in Sepsis group (P < 0.01). There was no significant difference between Normal control and Sham group (P > 0.05). In Sepsis group, the level of the GRmRNA in the adrenal tissue (0.80 ± 0.11) was significantly lower than that in the normal control group (1.44 ± 0.07, P < 0.01) and the Sham group (1.15 ± 0.11, P < 0.01). There was no significant difference between XBJ (1.08 ± 0.10) and Sepsis group (P > 0.05). Conclusion: In septic rats, the HPA axis was excessive activate. Xuebijing can decrease the level of CORT, increase the level of GRmRNA in adrenal, improve the excessive activate condition of HPA axis, and lessen the clinical manifestation.
文章引用:李宏山, 刘淑正, 周洁平, 常玉坤, 王静怡. 血必净对脓毒症大鼠皮质酮及肾上腺组织GRmRNA水平的影响[J]. 临床医学进展, 2015, 5(2): 112-117. http://dx.doi.org/10.12677/ACM.2015.52020

参考文献

[1] Xin, L., Juan, C., Xin, C.Z., et al. (2009) Targeting CpG DNA to screen and isolate anti-sepsis fraction and monomers from traditional Chinese herbs using affinity biosensor technology. International Immunopharmacology, 9, 1021-1031.
[2] 姚咏明, 张庆红 (2012) 从神经内分泌途径认识脓毒症时免疫反应失调. 中国急救医学, 32, 97-100.
[3] Flier, M.A., Rittirsch, D., Weckbach, S., et al. (2011) Disturbances of the hypothalamic-pitritary-adrenal axis and plasma electrolytes during experimental sepsi. Ann Intensive Care, 1, 53.
[4] 李志军, 任新生, 李银平等 (2012) “三证三法”及“菌毒炎并治”治疗脓毒症的研究进展. 中国中西医结合急救杂志, 19, 321-323.
[5] Sun, J., Xue, Q., Guo, L., et al. (2010) Xuebijing protects agains lipopolysaccharide-induced lung injury in rabbits. Experimental Lung Research, 36, 211-218.
[6] Chaudry, I.H., Wichterman, K.A. and Baue, A.E. (1979) Effect of sepsis on tissue adenine nucleotide levels. Surgery, 85, 205-211.
[7] 曹书华, 王今达 (2002) 血必净对感染性多器官功能障碍综合征大鼠组织及内皮损伤保护作用的研究. 中国危重病急救医学, 14, 489-491.
[8] 张畔, 曹书华, 崔克亮等 (2002) 血必净对多脏器功能障碍综合征单核细胞HLA-DR表达影响的研究. 中国中西医结合急救杂志, 9, 21-23.
[9] Hubbard, W.J., Choudhry, M., Schwacha, M.G., et al. (2005) Cecal ligation and puncture. Shock, 24, 52-57.
[10] 姚咏明, 刘辉, 盛志勇 (2006) 提高对神经-内分泌-免疫网络与创伤脓毒症的认识. 中华创伤杂志, 22, 561-564.
[11] 刘娇, 董卫明, 高文蔚等 (2013) 糖皮质激素对烫伤后晚期脓毒症大鼠细胞免疫功能的影响. 武汉大学学报(医学版), 34, 662-664, 669.
[12] De Bosscher, K., Vanden Berghe, W. and Haegeman, G. (2000) Me-chanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: Negative interference of activated glucocorticoid receptor with transcriotion factors. Journal of Neuroimmunology, 109, 16-22.
[13] Song, L.N. (1994) Effects of retinoic acid and its dexamethasone on proliferation, differintiation and glucocorticoid receptor expression in cultured human osteosarcoma cells. Oncology Research, 6, 111-114.