OE  >> Vol. 5 No. 2 (June 2015)

    基于Jones矢量的单粒子散射Mueller矩阵的数值计算
    Numerical Calculation for Mueller Matrix of a Single Particle Based on Jones Vectors

  • 全文下载: PDF(513KB) HTML   XML   PP.26-32   DOI: 10.12677/OE.2015.52005  
  • 下载量: 1,691  浏览量: 5,489  

作者:  

周超伟,王清华,李振华:南京理工大学理学院,江苏 南京

关键词:
Jones矢量Stokes参量Mueller矩阵散射Jones Vector Stokes Parameters Mueller Matrix Scattering

摘要:

本文推导了基于Jones矢量的单粒子散射的数学表达式;根据Jones矢量与Stokes参量的内在联系,给出了由典型偏振态的Jones矢量出发,计算Mueller矩阵的具体步骤。通过数值模拟得出单粒子对称系统中:二维Mueller矩阵4行4列共16个子图关于对角线对称;m41,m42,m43,m14,m24,m34数值为零;二维Mueller矩阵中非零元素子图中仅5幅独立,其余可通过旋转变换得到。

The formulae of a single particle’s scattering based on Jones vectors are derived. Then, the scat-tering Jones vectors of the single particle for the typical polarization states can be calculated. Fur-ther, the Stokes parameters can be obtained according to the scattering Jones vectors. The proper linear combination of the typical scattering Stokes parameters will provide the elements of Mueller matrix. The simulations for the single particle show that the subgraphs of the 2D Mueller matrix are symmetrical about the diagonal. The values for m41, m42, m43, m14, m24, m34 are all zeros. Only five subgraphs for the nonzero elements are independent and the others can be gained by rotation.

文章引用:
周超伟, 王清华, 李振华. 基于Jones矢量的单粒子散射Mueller矩阵的数值计算[J]. 光电子, 2015, 5(2): 26-32. http://dx.doi.org/10.12677/OE.2015.52005

参考文献

[1] Ossikovski, R. and De Martino, A. (2015) Mueller matrix of a depolarizing homogeneous medium and its relation to the Mueller matrix logarithm. Journal of the Optical Society of America A, 32, 343-348.
[2] Hielscher, A.H., Eick, A.A., Mourant, J.R., et al. (1997) Diffuse backscattering Mueller matrices of highly scattering media. Optics Express, 1, 441-453.
[3] Espinosa-Luna, R. (2002) Scattering by rough surfaces in a conical configuration: Experimental Mueller matrix. Optics Letters, 27, 1510-1512.
[4] Ramella-Roman, J.C., Prahl, S.A. and Jacques, S.L. (2005) Three Monte Carlo programs of polarized light transport into scattering media: Part I. Optics Express, 13, 4420-4438.
[5] Ramella-Roman, J.C., Prahl, S.A. and Jacques, S.L. (2005) Three Monte Carlo programs of polarized light transport into scattering media: Part II. Optics Express, 13, 10392-10405.
[6] Wang, X., Wang, L.V., Sun, C.W., et al. (2003) Polarized light propagation through scattering media: Time-resolved Monte Carlo simulations and experiments. Journal of Biomedical Optics, 8, 608-617.
[7] 王清华, 李振华, 来建成, 贺安之 (2007) 随机介质背散射二维Mueller矩阵的数值模拟与分析. 光学与光电技术, 5, 1-4.
[8] Jones, R.C. (1941) A new calculus for the treatment of optical systems. Journal of the Optical Society of America, 31, 500-503.
[9] 阿查姆, R.M.A., 巴夏拉, N.M., (梁民基, 尹树百, 张福初, 等, 译) (1986) 椭圆偏振测量术和偏振光(中译版). 科学出版社, 北京, 51.
[10] McMaster, W.H. (1954) Polarization and the Stokes parameters. American Journal of Physics, 22, 351-362.
[11] Cameron, B.D. (1998) Measurement and calculation of the two-dimensional backscattering Mueller matrix of a turbid medium. Optics Letters, 23, 485-487.