大塑性变形工业纯钛的研究现状
Research Achievements of Sever Plastic Deformation on Commercially Pure Titanium
DOI: 10.12677/MEng.2015.22016, PDF, HTML, XML, 下载: 2,578  浏览: 9,431 
作者: 吕利强, 王艺超, 李 辉, 杨建朝:西部钛业有限责任公司,陕西 西安
关键词: 商业纯钛大塑性变形超细晶Commercially Pure Titanium Sever Plastic Deformation Ultra-Finer Grain
摘要: 本文概述了商业纯钛大塑性变形的近期研究现状,分析了等径角挤压、累积叠轧、异步轧制大塑性变形方法与原理。探讨了大塑性变形方式对纯钛晶粒细化、力学性能的影响及变化规律。基于目前SPD技术的应用现状,对其发展和应用前景展开了讨论和展望。
Abstract: This paper summarizes the research and development of sever plastic deformation (SPD) technique used in commercially pure titanium (CP-Ti) processing and presents the method and theory of ECAP (equal channel angle press), ARB (accumulation rolling bonding), and ASR (asymmetric rolling) respectively. The influence of the SPD type on pure titanium grain refinement as well as mechanical property, and the variation law of it are investigated. Based on the present application status of SPD, the application prospects and the development of it are discussed.
文章引用:吕利强, 王艺超, 李辉, 杨建朝. 大塑性变形工业纯钛的研究现状[J]. 冶金工程, 2015, 2(2): 98-106. http://dx.doi.org/10.12677/MEng.2015.22016

参考文献

[1] Lowe, T.C., Zhu, Y.T., Semiatin, S.L. and Berg, D.R. (2000) Overview and outlook for materials processed by severe plastic deformation. Investigation and Applications of Severe Plastic Deformation, 80, 347-356.
[2] 史庆南, 王效琪, 起华荣 (2012) 大塑性变形(severe plastic deformation, SPD)的研究现状. 昆明理工大学学报(自然科学版), 2, 23-38.
[3] 程永奇, 陈振华, 夏伟军 (2006) 大塑性变形的研究与发展现状. 材料导报, F11, 245-248.
[4] 王苗, 杨延清, 罗贤 (2013) 超细晶钛合金的制备及性能研究现状. 材料导报, 13, 94-98.
[5] Zhernakov, V.S., Latysh, V.V., et al. (2001) The development of nano-structured SPD Ti for structure use. Scripta Materialia, 44, 1772.
[6] 冯颖芳 (2012) 世界钛及钛合金的应用研究进展. 世界有色金属, 4, 54-57.
[7] Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V. (2000) Bulk nanostructured materials from severe plastic deformation. Progress in Materials Science, 45, 103-190.
[8] Balyanov, A., Kutnyakova, J., et al. (2004) Corrosion resistance of ultra fine-grain Ti. Scripta Mate-rialia, 51, 225-229.
[9] 范志国 (2005) 超细晶纯Ti及TiNi合金制备及组织与力学行为. 博士论文, 上海交通大学, 上海.
[10] Valiev, R.Z. (2004) Nanostructuring of metals by severe plastic deformation for advanced properties. Nature Materials, 3, 511-516.
[11] Toth, L.S. and Gu, C.F. (2014) Ultrafine-grain metals by sever plastic deformation. Material Characterization, 92, 1- 14.
[12] Chen, Y.J., Li, Y.J., Walmsley, J.C., Dumoulin, S., Gireesh, S.S., Armada, S., et al. (2011) Quantitative analysis of grain refinement in titanium during equal channel angular pressing. Scripta Materialia, 64, 904-907.
[13] Chen, Y.J., Li, Y.J., Walmsley, J.C., Dumoulin, S., Skaret, P.C. and Roven, H.J. (2010) Microstructure evolution of commercial pure titanium during equal channel angular pressing. Material Science and Engineering: A, 527, 789-796.
[14] Fan, Z.G., Jiang, H., Sun, X.G., Song, J., Zhang, X.M. and Xie, C.Y. (2009) Mi-crostructures and mechanical deformation behaviors of ultrafine-grained commercial pure (grade 3) Ti processed by two-step severe plastic deformation. Material Science and Engineering: A, 527, 45-51.
[15] Zhao, X.C., Yang, X.R., Liu, X.Y., Wang, C.T., Huang, Y. and Langdon, T.G. (2014) Processing of commercial purity titanium by ECAP using a 90 degrees die at room temperature. Material Science and Engineering: A, 607, 452-489.
[16] Saito, Y., Tsuji, N., Utsunomiya, H., Sakai, T. and Hong, R.G. (1998) Ultrafine grained bulk aluminum produced by accumulative roll-bonding (ARB) process. Scripta Materialia, 39, 1221-1227.
[17] Azushima, A., Kopp, R., Korhonen, A., Yangd, D.Y., Micarie, F., Lahoti, G.D., et al. (2008) Severe plastic deformation (SPD) processes for metals. CIRP An-nals—Manufacturing Technology, 57, 716-735.
[18] Milner, J.L., Abu-Farha, F., Bunget, C., Kurfess, T. and Ham-mond, V.H. (2013) Grain refinement and mechanical properties of CP-Ti processed by warm accumulative roll bonding. Materials Science & Engineering: A, 561, 109-117.
[19] Karimi, M. and Toroghinejad, M.R. (2014) An alternative method for manufacturing high-strength CP Ti-SiC composites by accumulative roll bonding process. Materials and Design, 59, 494-501.
[20] Li, Z.M., Fu, L.M., Fu, B. and Shan, A.D. (2012) Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling. Materials Science and Engineering: A, 558, 309-318.
[21] Mousavi, S.A.A.A., Ebrahimi, S.M. and Madoliat, R. (2007) Three dimensional numerical analyses of asymmetric rolling. Journal of Materials Processing Technology, 187-188, 725-729.
[22] Jiang, J.H., Ding, Y., Zuo, F.Q. and Shan, A.D. (2009) Mechanical properties and microstructures of ultrafine-grained pure aluminum by asymmetric rolling. Scripta Materialia, 60, 905-908.
[23] 刘刚, 刘金阳, 王小兰, 王福会, 赵骧, 左良 (2013) 异步轧制纯Ti薄板表面纳米晶的形成. 金属学报, 5, 599- 604.
[24] 李志明, 蒋建华, 单爱党 (2011) 异步轧制工业纯钛的组织与力学性能. 上海有色金属, 4, 151-155.
[25] Li, Z.M., Fu, L.M., Fu, B. and Shan, A.D. (2012) Effects of annealing on microstructure and mechanical properties of nano-grained titanium produced by combination of asymmetric and symmetric rolling. Materials Science and Engineering: A, 558, 309-318.
[26] Azushima, A., Kopp, R., Korhonen, A., Yang, D.Y., Micari, F., Lahoti, G.D., et al. (2008) Severe plastic deformation (SPD) processes for metals. CIRP Annals—Manufacturing Technology, 57, 716-735.