铜胁迫与外源乙烯相互作用对长春花幼苗生长和生理代谢的影响
The Effects of Copper Stress and the Involved Role of Ethylene on the Growth and Physiological Metabolism of Catharanthus roseus
DOI: 10.12677/BR.2015.43007, PDF, HTML, XML, 下载: 2,363  浏览: 6,651  国家自然科学基金支持
作者: 刘 灵, 潘亚婕, 高媚娇, 郭晓瑞:东北林业大学森林植物生态学教育部重点实验室,黑龙江 哈尔滨
关键词: 长春花铜胁迫乙烯富集转运次生代谢Catharanthus roseus Copper Stress Ethephon Accumulate and Transport Secondary Metabolism
摘要: 铜是植物生长发育所必需的营养元素。本文以药用植物长春花(Catharanthus roseus)为材料,从长春花在铜胁迫的逆境条件下培养入手,并且辅助以外源乙烯调控,研究其对长春花初生代谢、Cu的富集和转运以及次生代谢等方面的协同效应。当铜胁迫浓度较低时叶绿素含量减少导致光合作用减弱;根部对Cu有着较强的富集能力,并且Cu在长春花植株体内由成熟组织向幼嫩组织转运率较高,在此基础上加入外源乙烯利后,降低了植株各组织部位对铜的富集能力,降低了铜胁迫对长春花植株的胁迫伤害,促进了铜由成熟叶片向幼嫩组织的转运率。这些结果表明,铜胁迫对长春花初生和次生代谢具有显著的抑制作用,外源添加乙烯不但可以缓解铜胁迫引起的生长抑制和生理伤害,同时对长春花叶片中生物碱的合成积累具有协同促进效应。
Abstract: Copper is the essential nutrient for the growth and development of plants. Here, a medical plant Catharanthus roseus was subjected to different concentrations of copper plus with exogenous ethylene, investigating their cooperative effects on plant growth, primary metabolism, accumula-tion and transportation of Cu, as well as secondary metabolisms. Our results showed that the treatment with low level of Cu decreased chlorophyll content and photosynthetic rate. In addition, large amounts of Cu was accumulated in roots and brought about obvious hurt on root growth. In this case, the plant was able to actively transfer Cu from mature tissues to young ones. When ex-ogenous ethylene was applied, the accumulation of Cu in detected tissues was decreased, partly reducing the physiological hurt of copper stress on plant and largely promoting the Cu transport rate from mature leaves to young tissues. It was concluded that the copper stress exerted an ob-viously adverse effect on plant primary and secondary metabolism. An increased exogenous ethy-lene supply could not only alleviate the inhibitory effect of copper stress on plant growth, but en-hance vinblastine accumulation in plants.
文章引用:刘灵, 潘亚婕, 高媚娇, 郭晓瑞. 铜胁迫与外源乙烯相互作用对长春花幼苗生长和生理代谢的影响[J]. 植物学研究, 2015, 4(3): 47-57. http://dx.doi.org/10.12677/BR.2015.43007

参考文献

[1] 徐勤松, 施国新, 王学, 等 (2006) 镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究. 水生生物学报, 1, 107-112.
[2] Vaillant, N., Monnet, F., Hitmi, A., et al. (2005) Comparative studyof responses in four Datura species to a zinc stress. Chemosphere, 59, 1005-1013.
[3] Muschitz, A., Faugeron, C. and Morvan, H. (2009) Re-sponse of cultured tomato cells subjected to excess zinc: Role of cell wall in zinc compartmentation. Acta Physiol Plant, 31, 1197-1204.
[4] 林春野 (1996) 重金属Cu、Cd、Zn的陆生植物毒性比较研究. 农业环境保护, 6, 266-267.
[5] 周以富, 董亚英 (2003) 几种重金属土壤污染及其防治的研究进展. 环境科学动态, 1, 15-16.
[6] 李元, 王焕校, 吴云树, 等 (1992) Cd、Fe及其复合污染对烟草叶片几项生理指标的影响. 生态学报, 2, 147-153.
[7] Christoffersen, R.E., Warm, E., Laties, G.G., et al. (1982) Gene expression during fruit ripening in avo-cado. Planta, 155, 52-57.
[8] 刘道宏 (1983) 植物叶片的衰老. 植物生理学通讯, 2, 14-19
[9] Brady, C., McGlsson, B. and Speirss, J. (1987) In: Nevins, D.J. and Richard, A.J., Eds., Tomato Biotechnology, INFO, NY.
[10] Van Doorn, W.G. and Stead, A.D. (1997) Abscission of flowers and floral parts. Journal of Experimental Botany, 48, 821-837.
[11] Zarembinski, T.I. and Theologis, A. (1994) Ethylene biosynthesis and act ion: A case of conservation. Plant Molecular Biology, 26, 1579-1597.
[12] Vázquez-Flota, F.A. and De Luca, V. (1998) Jasmonate modulates development- and light-regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemistry, 49, 395-402.
[13] 金玲, 高媚娇, 段喜华, 郭晓瑞 (2015) 锌胁迫长春花不同部位Zn 积累受外源乙烯利调控的特点. 植物研究, 1, 150-153.
[14] Huang, Y.Z., Zhu, Y.G., Hu, Y. and Liu, Y.X. (2006) Uptake and accumulation of arsenic by different soybean varieties. Journal of Agro-Environment Science, 25, 1397-1401.
[15] Chapelle, E.W. and Kim, M.S. (1992) Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentration of chlorophyll A, chlorophyll B and carotenoids in soybean leaves. Remote Sensing of Environment, 39, 239-247.
[16] Wellburn, A.R. (1994) The spectral determination of chlorophylls A and B, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology, 144, 307-313.
[17] 杨蕾, 唐中华, 祖元刚 (2007) 高效液相色谱法同时测定长春花中的文多灵、长春质碱和脱水长春碱. 色谱, 4, 550-552.
[18] Pan, Y.-J., Liu, J., Guo, X.-R., Zu, Y.-G. and Tang, Z.-H. (2015) Gene transcript profiles of the TIA biosynthetic pathway in response to ethylene and copper reveal their interactive role in modulating TIA biosynthesis in Catharanthus roseus. Protoplasma, 252, 813-824.
[19] Deering, D.W., Rouse, J.W., Haas, R.H. and Schell, J.A. (1975) Measuring forage production of grazing units from Landsat MSS data. Environment, 23, 1169-1173.
[20] Yang, C.-Q., Fang, X., Wu, X.-M., Mao, Y.-B., Wang, L.-J. and Chen, X.-Y. (2012) Transcriptional regulation of plant secondary metabolism. Journal of Integrative Plant Biology, 54, 703-712.