PM  >> Vol. 5 No. 4 (July 2015)

    一类双约束单自由度碰振系统的擦边运动分析
    The Analysis of Grazing Periodic Motions in a Single Degree of Freedom Vibro-Impact System with Double Constrains

  • 全文下载: PDF(684KB) HTML   XML   PP.121-128   DOI: 10.12677/PM.2015.54019  
  • 下载量: 1,584  浏览量: 7,412   科研立项经费支持

作者:  

徐洁琼:广西大学数学与信息科学学院,广西 南宁

关键词:
碰振系统单自由度擦边运动不连续映射方法稳定性Vibro-Impact System Single Degree of Freedom Grazing Motion Discontinuity Mapping Method Stability

摘要:

本文分析了一类单自由度双侧约束碰振系统的擦边周期运动的稳定性。利用不连续映射的方法建立了擦边周期轨道的局部Poincaré映射。在此基础上得到了双擦周期轨道的稳定性判据。根据此判据,可知系统在双擦周期轨道附近不存在局部吸引子,即,发生不连续擦边分岔。最后,用数值结果验证了理论方法的可行性。

The stability of grazing periodic motion in a single degree of freedom vibro-impact system with double constrains is analyzed. The Poincaré mapping near the grazing trajectory is established by using the discontinuity mapping method. And the stability criterion of double grazing periodic motion is obtained. According to the criterion, it is demonstrated that local attractors do not exist near the double grazing trajectory, i.e., the grazing bifurcation is discontinuous. Finally, validity of the theoretical analysis is verified by the numerical results.

文章引用:
徐洁琼. 一类双约束单自由度碰振系统的擦边运动分析[J]. 理论数学, 2015, 5(4): 121-128. http://dx.doi.org/10.12677/PM.2015.54019

参考文献

[1] Shaw, S.W. (1985) The dynamics of a harmonically excited system having rigid amplitude constraints: part II-Chaotic motions and global biburcations. Journal of Applied Mechanics, 52, 459-464.
http://dx.doi.org/10.1115/1.3169069
[2] Whiston, G.S. (1992) Singularities in vibro-impact dynamics. Journal of Sound and Vibration, 152, 427-460.
http://dx.doi.org/10.1016/0022-460X(92)90480-L
[3] Nordmark, A.B. (1991) Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound and Vibration, 145, 279-297.
http://dx.doi.org/10.1016/0022-460X(91)90592-8
[4] Fredriksson, M.H. and Norddmark, A.B. (2000) On normal form calculations in impact oscillators. Proceedings of the Royal Society London A, 456, 315-329.
http://dx.doi.org/10.1098/rspa.2000.0519
[5] di Bernardo, M., Budd, C.J. and Champneys, A.R. (2001) Normal form maps for grazing bifurcation in n-dimensional piecewise-smooth dynamical systems. Physic D, 160, 222-254.
http://dx.doi.org/10.1016/S0167-2789(01)00349-9
[6] Foale, S. and Bishop, S.R. (1992) Dynamical complexities of forced impacting. Philosophical Transactions of the Royal Society London A, 338, 547-556.
http://dx.doi.org/10.1098/rsta.1992.0020
[7] Luo, A.C.J. (2004) On the symmetry of solution in non-smooth dynamical systems with two constraints. Journal of Sound and Vibration, 273, 1118-1126.
http://dx.doi.org/10.1016/j.jsv.2003.09.011
[8] Luo, G.W., Zhang, Y.L., Chu, Y.D. and Zhang, J.G. (2007) Co-dimension two bifurcations fixed points in a class of vibratory systems with symmetrical rigid stops. Nonlinear Analysis: Real World Applications, 9, 1272-1292.
http://dx.doi.org/10.1016/j.nonrwa.2006.07.003