JSTA  >> Vol. 3 No. 3 (July 2015)

    Construction and Evaluation of NADH Biosensor Based on Ion-Exchange Behavior between Nafion and Thionine

  • 全文下载: PDF(880KB) HTML   XML   PP.25-32   DOI: 10.12677/JSTA.2015.33004  
  • 下载量: 1,290  浏览量: 5,896   国家科技经费支持


税 月,吉 艳,梁羽佳,魏倾鹤,唐 悦,齐 斌:东北师范大学化学学院,吉林 长春;
高 翔:东北师范大学生命科学学院,吉林 长春

有序介孔碳电催化硫堇NADHOrdered Mesoporous Carbon Electrocatalysis Thionine NADH


以Nafion为离子交换材料,通过离子交换的方法制备了硫堇(Thionine, TH)/有序介孔碳(Ordered mesoporous carbon, OMC)复合材料修饰玻碳电极(Glassy carbon electrode, GCE),用电化学方法对该修饰电极进行了详细表征,在循环伏安曲线上可以观察到硫堇的一对可逆的氧化还原峰,证明硫堇已经被成功的固定到电极表面;对修饰电极的动力学研究表明电极过程是受表面控制。利用此修饰电极,0 V电位下即可以实现对烟酰胺腺嘌呤二核苷酸(Nicotinamide adenine dinucleotide, NADH)的安培检测,线性范围可达1 × 10−6 mol∙L−1~6 × 10−4 mol∙L−1,检出限达到1 × 10−7 mol∙L−1 (信噪比为3),并且能很好的消除尿酸、多巴胺以及对乙酰氨基酚(p-acetamidophenol, AP)的干扰,有希望成为有应用价值的NADH传感器。

Thionine/OMC/GCE was prepared by ion-exchange procedure. Electrochemical behaviors of the resulting electrode were investigated thoroughly with cyclic voltammetry, and a well-defined redox couple was clearly visualized. Under a lower operation potential of 0 V in 0.1 mol∙L−1 PBS (pH 7.0), NADH could be detected linearly up to a concentration of 1 × 10−6 mol∙L−1~6 × 10−4 mol∙L−1 mol∙L−1 with an extremely lower detection limit of 1 × 10−7 mol∙L−1 estimated (S/N = 3). The feasibility for simultaneous determination of uric acid, dopamine, AP and NADH was discussed. They did not in-terfere with each other in certain concentration. Based on the results, a new NADH sensor was successfully established using the PTH/OMC/GCE.

税月, 吉艳, 梁羽佳, 魏倾鹤, 唐悦, 高翔, 齐斌. 基于Nafion与硫堇离子交换行为的NADH生物传感器的构建与性能评价[J]. 传感器技术与应用, 2015, 3(3): 25-32. http://dx.doi.org/10.12677/JSTA.2015.33004


[1] Jaegfeldt, H. (1980) Adsorption and electrochemical oxidation behaviour of NADH at a clean platinum electrode. Journal of Electroanalytical Chemistry, 110, 295-302.
[2] Moiroux, J. and Elving, P.J. (1978) Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes. Analytical Chemistry, 50, 1056-1062.
[3] Alvarez, G.M.I., Saidman, S.B. and Jesus, L.C. (2000) Electrocatalytic detection of NADH and glycerol by NAD+- modified carbon electrodes. Analytical Chemistry, 72, 520-527.
[4] Grundig, B., Wittstock, G. and Rudel, U. (1995) Mediator-modified electrodes for electrocatalytic oxidation of NADH. Journal of Electroanalytical Chemistry, 395, 143-157.
[5] Jena, B.K. and Raj, C.R. (2005) Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network. Chemical Communica-tions, 15, 2005-2007.
[6] Mano, N. and Kuhn, A. (1999) Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation. Journal of Electroanalytical Chemistry, 477, 79-88.
[7] Wu, Q., Maskus, M. and Pariente, F. (1996) Electrocata-lytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands. Analytical Chemistry, 68, 3688- 3696.
[8] Akers, N.L., Moore, C.M. and Minteer, S.D. (2005) Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydro-genase enzymes. Electrochimica Acta, 50, 2521- 2525.
[9] Ensafi, A.A. (2003) Determination of ascorbic acid by electrocatalytic voltammetry with methylene blue. Analytical Letters, 36, 591-604.
[10] Muhtanu, F.D., Marcus, M. and Albert, S. (2002) Fast-scan cyclic voltammetry and scanning electrochemical microscopy studies of the pH-dependent dissolution of 2-electron mediators immobilized on zirco nium phosphate containing carbon pastes. Electroanalysis, 14, 1479-1487.
[11] Maria, J.L. and Miranda, A.J. (1997) Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis, 9, 191-202.
[12] 周颖琳, 胡玉姣, 曾涌淮 (2002) 血红蛋白在双十二烷基铵-聚乙烯硫酸盐多双层复合薄膜电极上的电化学与电催化. 分析化学, 30, 262-266.
[13] Razola, S.S., Ruizb, L. and Diez, N.M. (2002) Hydrogen peroxide sensitive ampermetric biosensor based on horseradish peroxidase entrapped polypyrrole eletrode. Biosensors and Bioelectronics, 17, 921-928.
[14] 蔡称心, 鞠熀先, 陈洪渊 (1995) 聚硫堇修饰微带金电极的性质及对NADH的催化氧化. 高等学校化学学报, 16, 368-372.
[15] Gao, Q., Cui, X.Q. and Yang, F. (2003) Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosensors and Bioelectronics, 19, 277-282.
[16] Huang, M.H., Jiang, H., Zhai, J.F., et al. (2007) A simple route to incorporate redox mediator into carbon nanotubes/ Nafion composite film and its application to determine NADH at low potential. Talanta, 74, 132-139.
[17] Lei, C. and Lisdat, F. and Wollenberger, U. (1999) Cytochrome c/clay-modified electrode. Electroanalysis, 11, 274- 276.
[18] Yu, J.H. and Ju, H.X. (2002) Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor depo-sition method. Analytical Chemistry, 74, 3579-3583.
[19] Fan, C., Zhuang, Y. and Li, G. (2000) Direct electrochemistry and enhanced catalytic Activity for hemoglobin in a sodium montmorillonite film. Electroanalysis, 12, 1156-1158.
[20] Sallez, Y., Bianco, P. and Lojou, E. (2000) Electrochemical behavior of c-type cytochromes at clay-modified carbon electrodes: A model for the interaction between proteins and soils. Journal of Electroanalytical Chemistry, 493, 37-49.
[21] Walcarius, A., Mandler, D.L. and Cox, J.A. (2005) Ex-citing new directions in the intersection of functionalized sol-gel materials with electrochemistry. Journal of Materials Chemistry, 15, 3663 -3689.
[22] Lee, G. and Pyun, S. (2006) Effect of mi-crocrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochimica Acta, 51, 3029-3038.
[23] Furukawa, H., Hibino, M. and Zhou, H. (2003) Synthesis of mesoporous carbon-containing ferrocene derivative and its electrochemical property. Chemistry Letters, 42, 132-133.
[24] Vartufi, J.C., Kresge, C.T. and Leonowicz, M.E. (1994) Synthesis of mesoporous materials: Liquid-crystal templating versus intercalation of layered silicates. Chemical Material, 6, 2070-2077.
[25] Walcarius, A. (2005) Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials. Comptes Rendus Chimie, 8, 693-712.
[26] Zhou, M., Guo, L.P. and Lin, F.Y. (2007) Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode. Analytica Chimica Acta, 587, 124-131.
[27] Zhou, M., Guo, L.P., Ding, J. and Shang, Q.K. (2007) Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry, 79, 5328-5335.
[28] Zhou, M., Guo, L.P., Hou, Y. and Peng, X.J. (2008) Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine. Electrochim Acta, 53, 4176-4184.
[29] Ndamanisha, J.C., Guo, L.P. and Wang, G. (2007) Meso-porous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties. Microporous and Me-soporous Materials, 113, 114-121.