|
[1]
|
Jaegfeldt, H. (1980) Adsorption and electrochemical oxidation behaviour of NADH at a clean platinum electrode. Journal of Electroanalytical Chemistry, 110, 295-302. http://dx.doi.org/10.1016/S0022-0728(80)80381-0 [Google Scholar] [CrossRef]
|
|
[2]
|
Moiroux, J. and Elving, P.J. (1978) Effects of adsorption, electrode material, and operational variables on the oxidation of dihydronicotinamide adenine dinucleotide at carbon electrodes. Analytical Chemistry, 50, 1056-1062.
http://dx.doi.org/10.1021/ac50030a015 [Google Scholar] [CrossRef]
|
|
[3]
|
Alvarez, G.M.I., Saidman, S.B. and Jesus, L.C. (2000) Electrocatalytic detection of NADH and glycerol by NAD+- modified carbon electrodes. Analytical Chemistry, 72, 520-527. http://dx.doi.org/10.1021/ac9908344 [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Grundig, B., Wittstock, G. and Rudel, U. (1995) Mediator-modified electrodes for electrocatalytic oxidation of NADH. Journal of Electroanalytical Chemistry, 395, 143-157. http://dx.doi.org/10.1016/0022-0728(95)04090-B [Google Scholar] [CrossRef]
|
|
[5]
|
Jena, B.K. and Raj, C.R. (2005) Efficient electrocatalytic oxidation of NADH at gold nanoparticles self-assembled on three-dimensional sol-gel network. Chemical Communica-tions, 15, 2005-2007.
|
|
[6]
|
Mano, N. and Kuhn, A. (1999) Immobilized nitro-fluorenone derivatives as electrocatalysts for NADH oxidation. Journal of Electroanalytical Chemistry, 477, 79-88. http://dx.doi.org/10.1016/S0022-0728(99)00393-9 [Google Scholar] [CrossRef]
|
|
[7]
|
Wu, Q., Maskus, M. and Pariente, F. (1996) Electrocata-lytic oxidation of NADH at glassy carbon electrodes modified with transition metal complexes containing 1,10-phenanthroline-5,6-dione ligands. Analytical Chemistry, 68, 3688- 3696. http://dx.doi.org/10.1021/ac960395y [Google Scholar] [CrossRef]
|
|
[8]
|
Akers, N.L., Moore, C.M. and Minteer, S.D. (2005) Development of alcohol/O2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydro-genase enzymes. Electrochimica Acta, 50, 2521- 2525. http://dx.doi.org/10.1016/j.electacta.2004.10.080 [Google Scholar] [CrossRef]
|
|
[9]
|
Ensafi, A.A. (2003) Determination of ascorbic acid by electrocatalytic voltammetry with methylene blue. Analytical Letters, 36, 591-604. http://dx.doi.org/10.1081/AL-120018250 [Google Scholar] [CrossRef]
|
|
[10]
|
Muhtanu, F.D., Marcus, M. and Albert, S. (2002) Fast-scan cyclic voltammetry and scanning electrochemical microscopy studies of the pH-dependent dissolution of 2-electron mediators immobilized on zirco nium phosphate containing carbon pastes. Electroanalysis, 14, 1479-1487.
http://dx.doi.org/10.1002/1521-4109(200211)14:21<1479::AID-ELAN1479>3.0.CO;2-T [Google Scholar] [CrossRef]
|
|
[11]
|
Maria, J.L. and Miranda, A.J. (1997) Amperometric biosensors based on NAD(P)-dependent dehydrogenase enzymes. Electroanalysis, 9, 191-202. http://dx.doi.org/10.1002/elan.1140090302 [Google Scholar] [CrossRef]
|
|
[12]
|
周颖琳, 胡玉姣, 曾涌淮 (2002) 血红蛋白在双十二烷基铵-聚乙烯硫酸盐多双层复合薄膜电极上的电化学与电催化. 分析化学, 30, 262-266.
|
|
[13]
|
Razola, S.S., Ruizb, L. and Diez, N.M. (2002) Hydrogen peroxide sensitive ampermetric biosensor based on horseradish peroxidase entrapped polypyrrole eletrode. Biosensors and Bioelectronics, 17, 921-928.
http://dx.doi.org/10.1016/S0956-5663(02)00083-0 [Google Scholar] [CrossRef]
|
|
[14]
|
蔡称心, 鞠熀先, 陈洪渊 (1995) 聚硫堇修饰微带金电极的性质及对NADH的催化氧化. 高等学校化学学报, 16, 368-372.
|
|
[15]
|
Gao, Q., Cui, X.Q. and Yang, F. (2003) Preparation of poly(thionine) modified screen-printed carbon electrode and its application to determine NADH in flow injection analysis system. Biosensors and Bioelectronics, 19, 277-282.
http://dx.doi.org/10.1016/S0956-5663(03)00212-4 [Google Scholar] [CrossRef]
|
|
[16]
|
Huang, M.H., Jiang, H., Zhai, J.F., et al. (2007) A simple route to incorporate redox mediator into carbon nanotubes/ Nafion composite film and its application to determine NADH at low potential. Talanta, 74, 132-139.
http://dx.doi.org/10.1016/j.talanta.2007.05.042 [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Lei, C. and Lisdat, F. and Wollenberger, U. (1999) Cytochrome c/clay-modified electrode. Electroanalysis, 11, 274- 276. http://dx.doi.org/10.1002/(SICI)1521-4109(199904)11:4<274::AID-ELAN274>3.0.CO;2-G [Google Scholar] [CrossRef]
|
|
[18]
|
Yu, J.H. and Ju, H.X. (2002) Preparation of porous titania sol-gel matrix for immobilization of horseradish peroxidase by a vapor depo-sition method. Analytical Chemistry, 74, 3579-3583. http://dx.doi.org/10.1021/ac011290k [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Fan, C., Zhuang, Y. and Li, G. (2000) Direct electrochemistry and enhanced catalytic Activity for hemoglobin in a sodium montmorillonite film. Electroanalysis, 12, 1156-1158.
http://dx.doi.org/10.1002/1521-4109(200010)12:14<1156::AID-ELAN1156>3.0.CO;2-4 [Google Scholar] [CrossRef]
|
|
[20]
|
Sallez, Y., Bianco, P. and Lojou, E. (2000) Electrochemical behavior of c-type cytochromes at clay-modified carbon electrodes: A model for the interaction between proteins and soils. Journal of Electroanalytical Chemistry, 493, 37-49.
http://dx.doi.org/10.1016/S0022-0728(00)00280-1 [Google Scholar] [CrossRef]
|
|
[21]
|
Walcarius, A., Mandler, D.L. and Cox, J.A. (2005) Ex-citing new directions in the intersection of functionalized sol-gel materials with electrochemistry. Journal of Materials Chemistry, 15, 3663 -3689. http://dx.doi.org/10.1039/b504839g [Google Scholar] [CrossRef]
|
|
[22]
|
Lee, G. and Pyun, S. (2006) Effect of mi-crocrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochimica Acta, 51, 3029-3038.
http://dx.doi.org/10.1016/j.electacta.2005.08.037 [Google Scholar] [CrossRef]
|
|
[23]
|
Furukawa, H., Hibino, M. and Zhou, H. (2003) Synthesis of mesoporous carbon-containing ferrocene derivative and its electrochemical property. Chemistry Letters, 42, 132-133. http://dx.doi.org/10.1246/cl.2003.132 [Google Scholar] [CrossRef]
|
|
[24]
|
Vartufi, J.C., Kresge, C.T. and Leonowicz, M.E. (1994) Synthesis of mesoporous materials: Liquid-crystal templating versus intercalation of layered silicates. Chemical Material, 6, 2070-2077. http://dx.doi.org/10.1021/cm00047a029 [Google Scholar] [CrossRef]
|
|
[25]
|
Walcarius, A. (2005) Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these ordered materials. Comptes Rendus Chimie, 8, 693-712.
http://dx.doi.org/10.1016/j.crci.2004.10.003 [Google Scholar] [CrossRef]
|
|
[26]
|
Zhou, M., Guo, L.P. and Lin, F.Y. (2007) Electrochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode. Analytica Chimica Acta, 587, 124-131. http://dx.doi.org/10.1016/j.aca.2007.01.017 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhou, M., Guo, L.P., Ding, J. and Shang, Q.K. (2007) Electrochemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry, 79, 5328-5335.
http://dx.doi.org/10.1021/ac0703707 [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Zhou, M., Guo, L.P., Hou, Y. and Peng, X.J. (2008) Immobilization of Nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine. Electrochim Acta, 53, 4176-4184.
http://dx.doi.org/10.1016/j.electacta.2007.12.077 [Google Scholar] [CrossRef]
|
|
[29]
|
Ndamanisha, J.C., Guo, L.P. and Wang, G. (2007) Meso-porous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties. Microporous and Me-soporous Materials, 113, 114-121.
http://dx.doi.org/10.1016/j.micromeso.2007.11.009 [Google Scholar] [CrossRef]
|