基于葡萄糖氧化酶/介孔碳复合材料的葡萄糖生物传感器
Glucose Biosensor Based on Glucose Oxidase/Ordered Mesoporous Carbon Composite Material
DOI: 10.12677/JSTA.2015.33009, PDF, HTML, XML, 下载: 2,625  浏览: 10,760  国家科技经费支持
作者: 唐悦, 魏倾鹤, 梁羽佳, 吉艳*, 齐斌*:东北师范大学化学学院,吉林 长春
关键词: 有序介孔碳葡萄糖氧化酶葡萄糖生物传感器Ordered Mesoporous Carbon GOD Glocuse Biosensors
摘要: 我们采用浸渍法将GOD吸附在有序介孔碳修饰的电极表面(GOD/OMC/GCE),然后又在其表面覆盖了一层二茂铁丙酮溶液,最终成功构建了一种新的电流型葡萄糖生物传感器。结果表明,该修饰电极Fc/GOD/OMC/GCE对葡萄糖有很好的电催化活性,对葡萄糖的检测线性范围为5.00 μM~10.00 mM;检出限为1.03 ± 0.15 μM (信噪比为3)。同时对该修饰电极的选择性与稳定性也做了讨论。
Abstract: Glucose oxidase (GOD) was adsorbed on the surface of OMC modified glassy carbon electrode (GOD/OMC/GCE). Then ferrocene was assembled on the GOD/OMC/GCE platform to construct an amperometric glucose biosensor. The results showed that the Fc/GOD/OMC nanocomposite exhibits a remarkably improved catalytic activity towards the oxidation of glucose. The biosensor exhibited a wide linear response up to 10 mM with a low detection limit of 1.03 ± 0.15 μM (S/N = 3). The selectivity and stability of the biosensor were also investigated.
文章引用:唐悦, 魏倾鹤, 梁羽佳, 吉艳, 齐斌. 基于葡萄糖氧化酶/介孔碳复合材料的葡萄糖生物传感器[J]. 传感器技术与应用, 2015, 3(3): 69-78. http://dx.doi.org/10.12677/JSTA.2015.33009

参考文献

[1] Fumio, M. and Soichi, Y. (1997) Rapid determination of glucose and sucrose by amperometrie glucose—Sensing elec-trode combined with an invertase/mutarotase—Attached measuring cell. Biosensors and Bioelectronics, 12, 1013- 1020.
http://dx.doi.org/10.1016/S0956-5663(97)00057-2
[2] Clark, L.C. and Lyons, C. (1962) Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences, 102, 29-45.
http://dx.doi.org/10.1111/j.1749-6632.1962.tb13623.x
[3] Jun, S.W. and Han, B.Y. (2000) A glucose oxidase electrode based on electropolymerized conducting polymer with polyanion-enzyme conjugated dopant. Analytical Chemistry, 72, 2177-2181.
http://dx.doi.org/10.1021/ac9908041
[4] Liang, C. and Waldemar, G. (2001) Bio-inorganic composites for enzyme electrodes. Analytical Chemistry, 73, 2862- 2868.
http://dx.doi.org/10.1021/ac010009z
[5] Hui, Z.H., Hong, C. and Lian, L.S. (2005) Glucose biosensor based on platinum microparticles dispersed in nano- fibrous polyaniline. Biosensors and Bioelectronics, 20, 1305-1311.
http://dx.doi.org/10.1016/j.bios.2004.04.024
[6] Weaver, M.J. and Li, T.T.T. (1986) Rate-structure dependencles for intramolecular electron transfer via organic anchoring groups at metal surfaces. Journal of Physical Chemistry, 90, 3823-3829.
http://dx.doi.org/10.1021/j100407a060
[7] 袁耀峰, 叶素明, 张蕴文 (1995) 具有生物(理)活性的二茂铁衍生物. 化学通报, 5, 24-31.
[8] 钱军民, 李旭祥 (2001) 介体型电流式酶传感器中电子媒介体的研究进展. 化工进展, 6, 11-15.
[9] 刘海鹰, 邓家祺 (1995) Nafion-二茂铁-双酶修饰的葡萄糖传感器. 分析化学, 23, 154-158.
[10] 张校刚, 史彦莉, 力虎林 (2003) 一种结构新颖的二茂铁硫醇自组装膜的电化学行为. 电化学, 9, 235-239.
[11] 李亚卓, 张素霞, 李晓芳, 孙长青 (2003) 基于溶胶–凝胶技术的聚烯丙胺基二茂铁化学修饰电极的组装及其对抗坏血酸的电催化氧化. 高等学校化学学报, 8, 1373-1376.
[12] Koide, S. and Yokoyama, K. (1999) Electrochemical characterization of an enzyme electrode based on a ferrocene- containing redox polymer. Journal of Electroanalytical Chemistry, 468, 193-201.
[13] Gass, A.E.G., Gavis, G. and Francis, G.D. (1984) Ferrocene mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry, 56, 6673-6678.
[14] Ryoo, R., Joo, S.H. and Jun, S. (1999) Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B, 103, 7743-7746.
http://dx.doi.org/10.1021/jp991673a
[15] Lee, G.J. and Pyun, S.I. (2006) Effect of microcrystallite structures on electrochemical characteristics of mesoporous carbon electrodes for electric double-layer capacitors. Electrochimica Acta, 51, 3029-3038.
http://dx.doi.org/10.1016/j.electacta.2005.08.037
[16] Walcarius, A. (2005) Impact of mesoporous silica-based materials on electrochemistry and feedback from electrochemical science to the characterization of these order materials. Comptes Rendus Chimie, 8, 693-712.
http://dx.doi.org/10.1016/j.crci.2004.10.003
[17] Feng, J.J., Xu, J.J. and Chen, H.Y. (2007) Direct electron transfer and electrocatalysis of hemoglobin adsorbed on mesoporous carbon through layer-by-layer assembly. Biosensors and Bioelectronics, 22, 1618-1624.
http://dx.doi.org/10.1016/j.bios.2006.07.022
[18] Jia, N.Q., Wang, Z.Y., Yang, G.F., Shen, H.B. and Zhu, L.Z. (2007) Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective de-termination of dopamine. Electrochemistry Communications, 9, 233-238.
http://dx.doi.org/10.1016/j.elecom.2006.08.050
[19] Zhou, M., Guo, L.P., Lin, F.Y. and Liu, H.X. (2007) Elec-trochemistry and electrocatalysis of polyoxometalate-ordered mesoporous carbon modified electrode. Analytica Chimica Acta, 587, 124-131.
http://dx.doi.org/10.1016/j.aca.2007.01.017
[20] Zhou, M., Ding, J., Guo, L.P. and Shang, Q.K. (2007) Electro-chemical behavior of L-cysteine and its detection at ordered mesoporous carbon-modified glassy carbon electrode. Analytical Chemistry, 79, 5328-5335.
http://dx.doi.org/10.1021/ac0703707
[21] Zhou, M., Guo, L.P., Hou, Y. and Peng, X.J. (2008) Immobilization of nafion-ordered mesoporous carbon on a glassy carbon electrode: Application to the detection of epinephrine. Electro-chimica Acta, 53, 4176-4184.
http://dx.doi.org/10.1016/j.electacta.2007.12.077
[22] Ndamanisha, J.C., Guo, L.P. and Wang, G. (2008) Meso-porous carbon functionalized with ferrocenecarboxylic acid and its electrocatalytic properties. Microporous and Me-soporous Materials, 113, 114-121.
http://dx.doi.org/10.1016/j.micromeso.2007.11.009
[23] Liang, C.D. and Dai, S. (2006) Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. Journal of the American Chemical Society, 128, 5316-5317.
http://dx.doi.org/10.1021/ja060242k
[24] Nicholson, R.S. (1965) Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Analytical Chemistry, 37, 1351-1355.
http://dx.doi.org/10.1021/ac60230a016
[25] Georgakilas, V., Voulgaris, D., Vazquez, E., Prato, M., Guldi, D.M., Kukovecz, A. and Kuzmany, H. (2002) Purification of HiPCO carbon nanotubes via organic functionalization. Journal of the American Chemical Society, 124, 14318- 14319.
http://dx.doi.org/10.1021/ja0260869
[26] Ferrari, A.C. and Robertson, J. (2000) Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Physical Review B, 64, Article ID: 075414.
[27] Wang, S.F. and Du, D. (2003) Preparation and electrochemical properties of Keggin-type phosphomolybdic anions in electrostaticly linked l-cysteine self-assembled monolayers. Sensors and Actuators B: Chemical, 94, 282-289.
http://dx.doi.org/10.1016/S0925-4005(03)00368-X
[28] O’Connell, M.J., Ericson, L.M., Boul, P., Huffman, C., Wang, Y.H., Haroz, E., et al. (2001) Reversible water-solubi- lization of single-walled carbon nanotubes by polymer wrapping. Chemical Physics Letters, 342, 265-271.
http://dx.doi.org/10.1016/S0009-2614(01)00490-0
[29] Britto, P.J., Santhanam, K.S.V. and Ajayan, P.M. (1996) Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics, 41, 121-125.
http://dx.doi.org/10.1016/0302-4598(96)05078-7
[30] Pazur, J.H., Kleppe, K. and Cepure, A. (1965) A glyco-protein structure for glucose oxidase from Aspergillus niger. Archives of Biochemistry and Biophysics, 111, 35l-357.
http://dx.doi.org/10.1016/0003-9861(65)90196-7