Si添加对GdCoAl系合金非晶形成能力和磁热效应的影响
Effect of Si Addition on Glass-forming and Magnetocaloric Effect in CdCoAl Bulk Glassy Alloys
摘要: 利用铜模吸铸法制备了Gd-Co-Al-Si非晶合金。利用X射线衍射(XRD)、差示扫描量热法(DSC)和物性测量装置(PPMS)研究了其结构、热稳定性和磁热效应。结果显示:微量Si元素的加入可以显著提高合金的非晶形成能力和热稳定性。合金同时具有良好的磁热效应,具有9.2 J/kgK的最大磁熵变值(ΔSm)和800 J/kg磁致冷能力值(RC)。该研究表明GdCoAlSi合金可作为一种良好的磁致冷工质工作在液氮温区的附近。
Abstract: In this work, the Gd-Co-Al-Si bulk glassy alloys were synthesized by suck-cast method. The structure, thermal stability and magnetism of the alloys were taken by the X-ray diffraction (XRD), differential scanning calorimetry (DSC) and physical property measurement system (ppms) analysis. It is found that micro content of Si addition can extend the supercooled liquid region (ΔTx). As the result, the glass-forming ability (GFA) of the Gd-based alloys dramatically increased. The alloys also exhibit large magnetocaloric effect (MCE), ie, having the magnetic entropy change (ΔSm) of 9.2 J kg-1 K-1 and the regrigerant capacity (RC) of 800 J kg-1.
文章引用:李荨, 沈宝龙. Si添加对GdCoAl系合金非晶形成能力和磁热效应的影响[J]. 材料科学, 2011, 1(2): 52-55. http://dx.doi.org/10.12677/ms.2011.12010

参考文献

[1] W. H. Wang, D. Q. Zhao, M. X. Wang, et al. Formation of cerium-based bulk metallic glasses. Acta Materialia, 2006, 54(11): 3025-3032.
[2] F. Q. Guo, S. J. Poon, and G. J. Shiflet. Metallic glass ingots based on yttrium. Applied Physics Letters, 2003, 83(13): 2575- 2577.
[3] S. Li, X. K. Xi, W. H. Wang, et al. Formation and properties of new heavy rare-earth-based bulk metallic glasses. Science and Technology of Advanced Materials, 2005, 6(7): 823-827..
[4] Q. Luo, D. Q. Zhao, M. X. Pan, et al. Magnetocaloric effect of Ho-, Dy-, and Er-based bulk metallic glasses in helium and hydrogen liquefaction temperature range. Applied Physics Letters, 2007, 90(21): Article ID 211903.
[5] J. Du, Q. Zheng, Y. B. Li, et al. Large magnetocaloric effect and enhanced magnetic refrigeration in ternary Gd-based bulk metallic glasses. Journal of Applied Physics, 2008, 103(2): Article ID 023918.
[6] B. Zhang, R. J. Wang, D. Q. Zhao, et al. Properties of Ce-based bulk metallic glass-forming alloys. Physical Review B (Condensed Matter and Materials Physics), 2004, 70(22): Article ID 224208.
[7] K. A. Gschneidner, V. K. Pecharsky, and A. O. Tsokol. Recent developments in magnetocaloric materials. Reports on Progress in Physics, 2005, 68(6): 1479-1539.
[8] O. Tegus, E. Brück, L. Zhang, et al. Magnetic-phase transitions and magnetocaloric effects. Physica B, 2002, 319(1-4): 174-192.
[9] Q. Luo, D. Q. Zhao, M. X. Pan, et al. Magnetocaloric effect in Gd-based bulk metallic glasses. Applied Physics Letters, 2006, 89(8): Article ID 081914.
[10] L. Liang, X. Hui, Y. Wu, et al. Large magnetocaloric effect in Gd36Y20Al24Co20 bulk metallic glass. Journal of Alloys and Compounds, 2008, 457(1-2): 541-544.
[11] L. Liang, X. Hui, C. M. Zhang, et al. A Dy-based bulk metallic glass with high thermal stability and excellent magnetocaloric properties. Journal of Alloys and Compounds, 2008, 463(1-2): 30-33.
[12] Q. Y. Dong, B. G. Shen, J. Chen, et al. Large magnetic refrigerant capacity in Gd71Fe3Al26 and Gd65Fe20Al15 amorphous alloys. Journal of Applied Physics, 2009, 105(5): Article ID 053908.
[13] J. Du, Q. Zheng, E. Brück, et al. Spin-glass behavior and magnetocaloric effect in Tb-based bulk metallic glass. Journal of Magnetism and Magnetic Materials, 2009, 321(5): 413-417.
[14] V. Franco, C. F. Conde, A. Conde, et al. Enhanced magnetocaloric response in Cr/Mo containing Nanoperm-type amorphous alloys. Applied Physics Letters, 2007, 90(5): Article ID 052509.
[15] F. Johnson, R. D. Shull. Amorphous-FeCoCrZrB ferromagnets for use as high-temperature magnetic refrigerants. Journal of Applied Physics, 2006, 99(8): Article ID 08K909.
[16] V. Franco, C. F. Conde, J. S. Blázquez, et al. A constant magnetocaloric response in FeMoCuB amorphous alloys with different Fe/B ratios. Journal of Applied Physics, 2007, 101(9): Article ID 093903.