合成化学研究  >> Vol. 3 No. 2 (June 2015)

溶剂热法制备LaF3:Ce3+/Tb3+晶体及功能化
Synthesis of LaF3:Ce3+/Tb3+ Crystals via Solvothermal Method and Functionalization

DOI: 10.12677/SSC.2015.32003, PDF, HTML, XML, 下载: 2,976  浏览: 7,266  科研立项经费支持

作者: 张 艺*:伊犁师范学院,新疆 伊宁

关键词: 溶剂热法聚丙烯酸(PAA)功能化材料LaF3Solvothermal Method Poly(acrylic acid) (PAA) Functionalized Materials LaF3

摘要: 采用溶剂热法,乙醇和乙二醇为混合溶剂,160℃条件下,反应12小时,成功制备了LaF3:Ce3+/Tb3+晶体。并用聚丙烯酸(PAA)对材料进行了功能化,红外吸收光谱显示材料表面成功修饰上羧基(-COOH)。以275 nm为激发波长,LaF3:Ce3+/Tb3+及COOH-LaF3:Ce3+/Tb3+晶体的发射波长均为526 nm,而功能化的LaF3:Ce3+/Tb3+荧光强度较低。
Abstract: The LaF3:Ce3+/Tb3+ crystals were prepared using solvothermal method, at 160˚C for 12 h in the mixed solvents of ethanol and glycol. The as-prepared LaF3:Ce3+/Tb3+ crystals were functionlized with Poly(acrylic acid). IR absorption spectra showed that the carboxyl group (-COOH) is on the surface of LaF3:Ce3+/Tb3+ crystals. Under 275 nm excitation, the emission peaks of LaF3:Ce3+/Tb3+ and COOH-LaF3:Ce3+/Tb3+ crystals locate at 526 nm. Moreover, the fluorescent intensity of the functional LaF3:Ce3+/Tb3+ is lower.

文章引用: 张艺. 溶剂热法制备LaF3:Ce3+/Tb3+晶体及功能化[J]. 合成化学研究, 2015, 3(2): 19-23. http://dx.doi.org/10.12677/SSC.2015.32003

参考文献

[1] Xia, H.R., Li, L.X., Zhang, H.J., et al. (2000) Raman spectra and laser properties of Yb-doped yttrium orthovanadate crystals. Journal of Applied Physics, 1, 269-273.
http://dx.doi.org /10.1063/1.371855
[2] Giesber, H., Ballato, J., Chumanov, G., et al. (2003) Spectroscopic properties of Er3+ and Eu3+ doped acentric LaBO3 and GdBO3. Journal of Applied Physics, 11, 8987-8994.
http://dx.doi.org /10.1063/1.1536724
[3] 李兴民 (2006) 共沉淀法合成长余辉材料及其特性研究. 硕士论文, 河北大学, 保定市.
[4] Veith, M., Mathur, S., Kareiva, A., et al. (1999) Low temperature synthesis of nanocrystalline Y3Al5O12(YAG) and ce-doped Y3Al5O12 via different sol-gel method. Journal of Materials Chemistry, 12, 3069-3079.
http://dx.doi.org /10.1039/a903664d
[5] 曹霄峰 (2007) 金属氧化物纳米材料的溶液燃烧法制备、表征及性能研究. 硕士论文, 安徽师范大学, 芜湖市.
[6] Wang, L.Y. and Li, Y.D. (2007) Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals. Chemistry of Materials, 4, 727-734.
http://dx.doi.org /10.1021/cm061887m
[7] Yi, G.S., Chow, G., et al. (2006) Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Advanced Functional Materials, 18, 2324-2329.
http://dx.doi.org /10.1002/adfm.200600053
[8] Wang, L.Y., Yan, R.X., Hou, Z.Y., et al. (2005) Fluorescence resonant energy transfer biosensors based on upconversion luminescent nanoparticles. Angewandte Chemie International Edition, 44, 6054-6057.
http://dx.doi.org /10.1002/anie.200501907
[9] 李丹 (2010) 巯基乙酸修饰对六角相NaYF4:Yb,Er上转换发光纳米材料的影响. 硕士论文, 吉林大学, 长春.
[10] Yi, G.S. and Chow, G.M. (2006) Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion flurescence. Chemistry of Materials, 3, 341-343.
[11] Liu, T., Wang, Y., Qin, H.J., et al. (2011) Gd2O3:Eu3+@ mesoporous SiO2 bifunctional core-shell composites: Flurescence lable and drug release. Materials Research Bulletin, 46, 2296-2303.
http://dx.doi.org /10.1016/j.materresbull.2011.08.056
[12] Dong, L., Yang, Z.H., Zhang, Y., et al. (2010) Novel luminescent nanoparticles for DNA detection. Spectrochimica Acta Part A, 5, 1530-1534.
http://dx.doi.org /10.1016/j.saa.2010.02.011