块煤在气化炉拱顶下落过程的数值模拟研究
Numerical Simulation Research on Dropping Behavior of Lump Coal from the Gasifier Dome
DOI: 10.12677/MEng.2015.23018, PDF, HTML, XML, 下载: 2,285  浏览: 6,557 
作者: 王玉明, 徐万仁:宝山钢铁股份有限公司研究院,上海;张 群, 孙伟庆:宝山钢铁股份有限公司炼铁厂,上海
关键词: 块煤COREX传热传质数值模拟Lump Coal COREX Heat and Mass Transfer Numerical Simulation
摘要: 针对块煤在气化炉下落过程的传热传质现象建立了块煤变化相关模型,利用程序进行数值求解。结果表明块煤在熔融气化炉拱顶自由空间内下落过程极为短暂,其过程为加速度逐渐变小,速度不断增加过程。块煤下落过程中温度变化显著,其变化主要集中在块煤外部节点,块煤内部各节点温度几乎保持不变。块煤外表面温度变化明显,下落初期升温速率较大,后期升温速率减小,温度缓慢升高。块煤内部节点受传热影响升温速度慢。块煤下落初期表面水分快速蒸发,内部节点水分蒸发速率低于表面。越靠近块煤中心节点水分蒸发速率越小;块煤内部挥发分脱除曲线近似呈“阶梯状”分布。下落过程中块煤密度减小。
Abstract: Several correlative models were developed to evaluate heat and mass transfer phenomenon and dropping behaviour of lump coal from the gasifier dome. Some programs were used to acquire si-mulation result. The result shows that the dropping time of lump coal from the gasifier dome is very short. The acceleration speed decreases while the speed is increasing during the process of dropping. Temperature changes of lump coal are obvious in the dropping process of lump coal. Temperature changes focus on external node of lump coal. The temperature of internal node of lump coal is almost constant. Temperature change of outside surface of lump coal is obvious and the heating rate is high at the beginning of dropping of lump coal. However the heating rate decreases later and the temperature of lump coal increases slowly. Increase of internal node temperature of lump coal is slow because of influence of heat transfer. The surface moisture evaporates rapidly at the beginning of dropping of lump coal. The moisture evaporation rate of internal node of lump coal is faster than that of external node. The nearer the note to the core of lump coal, the lower the evaporation rate. The volatile removal of internal node of lump coal shows the ladder-like distribution. The density of lump coal decreases in the process of dropping.
文章引用:王玉明, 徐万仁, 张群, 孙伟庆. 块煤在气化炉拱顶下落过程的数值模拟研究[J]. 冶金工程, 2015, 2(3): 122-131. http://dx.doi.org/10.12677/MEng.2015.23018

参考文献

[1] Xu, C. and Cang, D. (2010) A brief overview of low CO2 emission technologies for iron and steel making. Iron Steel Research International, 17, 1-7.
http://dx.doi.org/10.1016/S1006-706X(10)60064-7
[2] Dash, R. and Das, C. (2009) Recent developments in iron and steel making industry. Engineering Innovation Research, 1, 23-33.
[3] 李维国, 钱晖, 周渝生, 等 (2005) 熔融还原技术方案探讨. 世界钢铁, 1, 27-31.
[4] 周渝生, 钱晖 (2005) Corex熔融还原炼铁新工艺. 世界钢铁, 1, 22-26.
[5] Wieder, K. (2005) Corex和Finex炼铁新工艺. 世界钢铁, 1, 10-15.
[6] Kim, B., Gupta, S., Lee, S., Kim, S. and Sahajwalla, V. (2008) Devolatilization and cracking characteristics of Australian lumpy coals. Energy & Fuels, 22, 514-522.
http://dx.doi.org/10.1021/ef700397t
[7] 李维国 (2008) COREX-3000生产现状和存在问题的分析. 宝钢技术, 6, 11-18.
[8] 湛文龙, 吴铿, 徐万仁, 等 (2013) COREX熔融气化炉中块煤裂化现象. 钢铁, 1, 20-23.
[9] 王凤 (2009) 熔融气化炉内气流分布模拟. 硕士论文, 重庆大学, 重庆.