材料科学  >> Vol. 1 No. 2 (July 2011)

孔隙对复合材料层压板湿热性能的影响
Influence of Void on the Hygrothermal Behaviour of Composite Laminates

DOI: 10.12677/ms.2011.12014, PDF, HTML, 下载: 2,941  浏览: 9,296 

作者: 吴宝昌, 朱洪艳, 刘丽红, 陈玉勇, 张东兴

关键词: 聚合物基复合材料孔隙率环境退化力学性能
Polymer-matrix Composites; Porosity; Environmental Degradation; Mechanical Properties

摘要: 针对某飞机上应用的典型的层压板[(±45)/(0,90)2/(±45)]S和[(±45)/04/(±45)/(0,90)]S,研究了孔隙对碳纤维增强环氧树脂基复合材料层压板的吸湿性能、脱湿性能以及室温、湿热和脱湿层间剪切性能的影响。研究结果表明: 两种层压板的吸湿率和最大吸湿量随着孔隙率的增加而上升,层压板吸湿后出现了膨胀,表面出现了裂纹,大多数裂纹都位于层间树脂富集区,层压板内的孔隙在湿热作用下而产生了裂纹并且裂纹在孔隙之间扩展,复合材料层压板在脱湿后会有一部分水分残留,孔隙率大的试样残留的水分稍微多一些。含不同孔隙率层压板的层间剪切强度随着吸湿量的变化比较复杂。
Abstract: The influence of void on the moisture absorption, desorption and interlaminar shear strength (ILSS) of [(±45)/(0,90) 2/(±45)]S and [(±45)/04/(±45)/(0,90)]S composite laminates used in a aircraft was investigated. The results show that the rate of water uptake and the maximum level of moisture absorption in the two laminates increase with the increasing void content. Expand occurs in the two laminates after moisture absorption, and cracks were found on the surface of laminates. Most of cracks locate at the rich resin between the plies. Cracks can also be found around voids in the laminates and propagate between voids. Some water retained in the composite laminates after desorption and more water was kept in the laminates with larger void content. The ILSS of laminates with different void content varied complexly with the mass gain of moisture absorption.

文章引用: 吴宝昌, 朱洪艳, 刘丽红, 陈玉勇, 张东兴. 孔隙对复合材料层压板湿热性能的影响[J]. 材料科学, 2011, 1(2): 71-76. http://dx.doi.org/10.12677/ms.2011.12014

参考文献

[1] J. L. Thomason. The interface region in glass fibre-reinforced epoxy resin composites: 2 water absorption, voids and interface. Composites, 1995, 26(7): 477-485.
[2] J. L. Thomason. The interface region in glass fibre-reinforced epoxy resin composites: 1 sample preparation, void content and interfacial strength. Composites, 1995, 26(7): 467-475.
[3] K. Liao, Y. M. Tan. Influence of moisture-induced stress on in situ fiber strength degradation of undirectional polymer composite. Composites Part B: Engineering, 2001, 32(4): 365-370.
[4] H. S. Choi, K. J. Ahn, J. D. Nam, et al. Hygroscopic aspects of epoxy/carbon fiber composite laminates in aircraft environments. Composites Part A, 2001, 32(5): 709-720.
[5] Y. C. Lin, X. Chen. Moisture sorption-desorption-resorption characteristics and its effect on the mechanical behavior of the epoxy system. Polymer, 2005, 46(25): 11994-12003.
[6] Y. C. Lin, X. Chen. Investigation of moisture diffusion in epoxy system: experiments and moledular dynamics simulations. Che- mical Physics Letters, 2005, 412(4-6): 322-326.
[7] M. C. Lee, N. A. Peppas. Water transport in graphite/epoxy composites. Journal of Applied Polymer Science, 1993, 47(8): 1349-1359.
[8] 彭雷, 张建宇, 鲍蕊等. 湿热、紫外环境对T300/QY8911复合材料孔板静力性能的影响[J]. 复合材料学报, 2009, 26(3): 18-23.
[9] 张静, 张琦, 马会平等. G827/5224和G803/5224碳纤维增强环氧树脂湿热老化的研究[J]. 装备环境工程, 2008, 5(3): 16-20.
[10] R. B. Li, A. F. Yee. Effect of temperature on moisture absorption in a bismaleimide resin and its carbon fiber composites. Polymer, 2002, 43(14): 3987-3997.
[11] P. C. Varelidis, D. G. Papakostopoulos, C. I. Pandazis, et al. Polyamide coated kevlarTM fabric in epoxy resin: Mechanical properties and moisture absorption studies. Composites Part A, 2000, 31(6): 549-558.
[12] J. Scheirs. Compositional and failure analysis of polymers a practical approach. Hoboken: John Wiley, 2000.
[13] M. Woo, M. R. Piggott. Water absorption of resins and composites: IV water transport in fiber reinforced plastics. Journal of Composites Technology and Research, 1988, 10(1): 20-24.
[14] 潘文革, 矫桂琼, 杨杰. 二维机织树脂基复合材料湿热性能研究[J]. 航空材料学报, 2007, 27(1): 37-40.
[15] S. B. Kumar, I. Sridhar, and S. Sivashanker. Influence of humid environment on the performance of high strength structural carbon fiber composites. Materials Science and Engineering A, 2008, 498(1-2): 174-178.
[16] C. J. Tsenoglou, S. Pavlidou, and C. D. Papaspyrides. Evaluation of interfacial relaxation due to water absorption in fiber-polymer composites. Composites Science and Technology, 2006, 66(15): 2855-2864.
[17] M. L. Costa, M. C. Rezende, and S. F. M. Almeida. Effect of void content on the moisture absorption in polymeric composites. Polymer-Plastics Technology and Engineering, 2006, 45(6): 691-698.
[18] B. D. Harper, G. H. Staab, and R. S. Chen. Note on the effects of voids upon the hygral and mechanical properties of AS4/3502 graphite/epoxy. Journal of Composite Materials, 1987, 21(3): 280-289.
[19] S. Y. Park, W. J. Choi, and H. S. Choi. The effects of void contents on the long-term hygrothermal behaviors of glass/epoxy and GLARE laminates. Composite Structures, 2010, 92(1): 18-24.
[20] J. Jedidi, F. Jacquemin, and A. Vautrin. Accelerated hygrothermal cyclical tests for carbon/epoxy laminates. Composites Part A, 2006, 37(4): 636-645.
[21] B. F. Boukhoulda, E. Adda-Bedia, and K. Madani. The effect of fiber orientation angle in composite materials on moisture absorption and material degradation after hygrothermal ageing. Composite Structures, 2006, 74(4): 406-418.
[22] J. P. Lucas, J. Zhou. The effects of sorbed moisture on resin matrix composites. Journal of Metals, 1993, 45(12): 37-40.
[23] J. Zhou, J. P. Lucas. Hygrothermal effects of epoxy resin. Part I: The nature of water in epoxy. Polymer, 1999, 40(20): 5505-5512.