图像与信号处理  >> Vol. 4 No. 4 (October 2015)

基于对SIFT算法优化的图像拼接技术
Image Mosaic Technology Based on an Optimized Method of SIFT Algorithm

DOI: 10.12677/JISP.2015.44017, PDF, HTML, XML,  被引量 下载: 2,173  浏览: 6,775 

作者: 杨 程*, 徐晓刚, 徐冠雷:海军大连舰艇学院,辽宁 大连

关键词: SIFT图像拼接最小二乘法SIFT Image Mosaic The Least Square Method

摘要: 针对利用SIFT算法的图像拼接在匹配过程中会出现一些错误的特征点问题,提出一种对SIFT算法优化的方法。利用算法将错误的特征点除去,并且利用最小二乘法对提纯后的图像进行拟合,提高了匹配精度,对拼接效果有较好的增强,同时也缩短了拼接的时间。实验结果表明,优化后的算法可实现相对较好效果的图像拼接。
Abstract: In order to solve the problems of wrong feature points in the process of image mosaic algorithm based on SIFT, an optimized method is put forward. Using a new algorithm to eliminate the wrong feature points, and using the least square method to fit the new picture not only improve the matching accuracy, but also improve the image mosaic result and reduce the time of the image mosaic. Experimental results demonstrate that the method can produce high quality image mosaic.

文章引用: 杨程, 徐晓刚, 徐冠雷. 基于对SIFT算法优化的图像拼接技术[J]. 图像与信号处理, 2015, 4(4): 139-145. http://dx.doi.org/10.12677/JISP.2015.44017

参考文献

[1] 袁杰 (2013) 基于SIFT的图像配准与拼接技术研究. 南京理工大学, 南京.
[2] Moravec, H.P. (1981) Rover visual obstacle avoidance. International Joint Conference on Artificial Intelligence, 3, 117-118.
[3] Harris, C.G. and Stephens, M. (1988) A combined corner and edge detector. Proceedings of Fourth Alvey Vision Conference, 147-151.
[4] Lowe, D.G. (2004) Distinctive image features from scale-invariant key points. International Journal of Computer Vision, 60, 91-110.
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
[5] Perona, P., Malik, J., Perona, P., et al. (1990) Scale-space filtering and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis & Machine Intelligence, 12, 629-639.
http://dx.doi.org/10.1109/34.56205
[6] Lindeberg, T. (1994) Scale-space theory: A basic tool for analysing structures at different scales. Journal of Applied Statistics, 21, 224- 270.
[7] Liao, K., Liu, G. and Hui, Y. (2013) An improvement to the SIFT descriptor for image representation and matching. Pattern Recognition Letters, 34, 1211-1220.
http://dx.doi.org/10.1016/j.patrec.2013.03.021
[8] Zhong, S., Wang, J., Yan, L., et al. (2013) A real-time embedded architecture for SIFT. Journal of Systems Architecture the Euromicro Journal, 59, 16-29.
http://dx.doi.org/10.1016/j.sysarc.2012.09.002
[9] Wu, X., Zhao, Q. and Bu, W. (2014) A SIFT-based contactless palmprint verification approach using iterative RANSAC and local palmprint descriptors. Pattern Recognition, 47, 3314-3326.
http://dx.doi.org/10.1016/j.patcog.2014.04.008