矿山工程  >> Vol. 3 No. 4 (October 2015)

含瓦斯煤全应力–应变过程中力学及渗流特性试验研究
Experiment Study on Mechanics and Permeability of Coal Containing Gas under the Total Stress-Strain Tests

DOI: 10.12677/ME.2015.34026, PDF, HTML, XML, 下载: 1,933  浏览: 5,079 

作者: 王 倩*, 卢明玥:重庆工程职业技术学院,重庆;王维忠:重庆大学煤矿灾害动力学与控制国家重点实验室,重庆

关键词: 含瓦斯煤应力–应变关系弹性模量Coal Containing Gas The Stress-Strain Relationship Elastic Modul

摘要: 利用自行研制的含瓦斯煤热流固耦合伺服渗流试验装置,以原煤试样为研究对象,进行含瓦斯煤全应力–应变渗流试验。研究表明:在连续加载过程中,含瓦斯煤的应力–应变关系可以分为四个阶段:初始压实阶段、弹性阶段、屈服破坏阶段、破坏后阶段,这四个阶段煤样的应力–应变关系有较大差异;含瓦斯煤的弹性模量先下降后稳定,在破坏后快速下降;泊松比先下降后缓慢上升,在破坏后快速上升;含瓦斯煤的轴向应力与渗透率随轴向应变的变化规律基本呈相反的趋势;含瓦斯煤渗透率与体积应变密切相关,但分析发现,煤样体积最小时,其渗透率不是最低。
Abstract: A self-developed device called the coal-containing heat solid coupling servo seepage device is used to do the total stress-strain tests of coal samples. The result shows: In the process of continuous load, the stress-strain relationship of coal containing gas can be divided into four stages: the initial com-paction phase, the elastic phase, the yield and damage phase, the post-failure phase. The stress- strain relationship of these four phases makes a big difference; elastic modulus of coal containing gas first decreases and then keeps constant; it declines rapidly after destruction; the Poisson's ratio firstly dropped after a slow rise, and it raised rapidly after destruction. With the change of axial stress, the axial stress of the coal containing gas and its permeability is opposite. Permeability of the coal containing gas is closely related with its volumetric strain. But we have analyzed and found that, the permeability of the coal is not the lowest when its volume is the smallest.

文章引用: 王倩, 卢明玥, 王维忠. 含瓦斯煤全应力–应变过程中力学及渗流特性试验研究[J]. 矿山工程, 2015, 3(4): 188-194. http://dx.doi.org/10.12677/ME.2015.34026

参考文献

[1] 王颖轶, 张宏君, 黄醒春, 邱一平 (2002) 高温作用下大理岩应力–应变全过程的试验研究. 岩石力学与工程学报, S2, 2345-2349.
[2] 王恩元, 陈鹏, 李忠辉, 沈荣喜, 徐剑坤, 朱亚飞 (2014) 受载煤体全应力–应变过程电阻率响应规律. 煤炭学报, 11, 2220-2225.
[3] 覃仁辉, 孔思丽 (1996) 岩石全应力应变微观破裂模型. 贵州工学院学报, 05, 95-100.
[4] 李长洪, 蔡美峰, 乔兰, 王双红 (1999) 岩石全应力–应变曲线及其与岩爆关系. 北京科技大学学报, 06, 513-515.
[5] 王广荣, 薛东杰, 郜海莲, 周宏伟 (2012) 煤岩全应力–应变过程中渗透特性的研究. 煤炭学报, 01, 107-112.
[6] 杨永杰, 宋扬, 陈绍杰 (2007) 煤岩全应力应变过程渗透性特征试验研究. 岩土力学, 02, 381-385.
[7] 姜振泉, 季梁军 (2001) 岩石全应力–应变过程渗透性试验研究. 岩土工程学报, 02, 153-156.
[8] 朱珍德, 张爱军, 徐卫亚 (2002) 脆性岩石全应力–应变过程渗流特性试验研究. 岩土力学, 05, 555-558+563.
[9] 尹光志, 蒋长宝, 李晓泉, 王维忠, 蔡波 (2011) 突出煤和非突出煤全应力–应变瓦斯渗流试验研究. 岩土力学, 06, 1613-1619.
[10] 孙明贵, 黄先伍, 李天珍, 雷光宇, 茅献彪 (2006) 石灰岩应力–应变全过程的非Darcy流渗透特性. 岩石力学与工程学报, 03, 484-491.
[11] 赵连涛, 于旭磊, 刘启蒙, 胡戈 (2006) 煤层底板岩石全应力–应变渗透性试验. 煤田地质与勘探, 06, 37-40.
[12] 尹光志, 蒋长宝, 许江, 彭守建, 李文璞 (2011) 含瓦斯煤热流固耦合渗流实验研究. 煤炭学报, 09, 1495-1500.
[13] 王臣, 鲜学福, 周军平, 谷达圣 (2013) 含不同气体煤岩全应力–应变渗透特性试验研究. 地下空间与工程学报, 03, 492-496.
[14] 江东辉, 孙强, 朱术云, 杨秀元 (2012) 岩石全应力–应变过程渗透变化规律分析. 金属矿山, 02, 22-24+44.
[15] 王一栋, 姜振泉, 孙强, 张蕊 (2012) 煤系泥岩全应力–应变渗透试验研究. 矿业安全与环保, 04, 18-20+23+92.
[16] 陶云奇 (2009) 含瓦斯煤THM耦合模型及煤与瓦斯突出模拟研究. 重庆大学, 重庆.