JSTA  >> Vol. 3 No. 4 (October 2015)

    光纤电流互感器传输模型的研究
    Research of the Transmission Model of Fiber Optic Current Sensor

  • 全文下载: PDF(479KB) HTML   XML   PP.109-117   DOI: 10.12677/JSTA.2015.34013  
  • 下载量: 1,483  浏览量: 4,708   科研立项经费支持

作者:  

钱超,黄旭光,苏伟衡:华南师范大学,信息光电子科技学院,广东高校特种功能光纤工程技术研究中心,广东 广州

关键词:
光纤电流互感器线性双折射密勒矩阵正交反射镜法拉第效应Fiber Optic Current Sensor Linear Birefringence Muller Matrix Orthoconjugate Mirror Faraday Effect

摘要:

目前,多数光学电流互感器的原理都是基于法拉第旋光效应,传感头作为传感器的关键器件,其线性双折射是限制光纤电流互感器大规模实用化的主要原因之一。由于线性双折射的互易性以及法拉第旋光效应的非互易性,采用正交反射镜能在补偿线性双折射的同时使法拉第效应加倍。文中利用密勒矩阵和斯托克斯矢量推导出正交反射镜与传统反射镜的等效传输矩阵,结果表明只有在电流为零时,线性双折射才能被正交反射镜补偿,当电流不为零时,线性双折射对正交反射式结构的影响低于直接反射式结构,实验同时表明,正交反射镜相比传统反射镜具有更好的振动免疫性。

At present, most theory of optical fiber current sensor is based on Faraday effect. As the key com-ponents of OFCS, the linear birefringence of sensing head is one of the main reasons which res- tricts its wide-ranging applications. Due to the reciprocity of linear birefringence and non-recipro- city of Faraday effect, the usage of orthoconjugate mirror can eliminate the linear birefringence and double the faraday effect at the same time. We use Muller matrix and stokes vector to deduce the transmission matrix, which result that when current is null, linear birefringence can be eliminated; when current is not null, the impact of linear birefringence on orthoconjugate reflection structure is less than direct reflection structure. Meanwhile, experiments show that, orthoconjugate reflection structure has better vibration immunity than that of direct reflection structure.

文章引用:
钱超, 黄旭光, 苏伟衡, 胡迪. 光纤电流互感器传输模型的研究[J]. 传感器技术与应用, 2015, 3(4): 109-117. http://dx.doi.org/10.12677/JSTA.2015.34013

参考文献

[1] Silva, R.M., Martins, H., Nascimento, I., et al. (2012) Optical current sensors for high power systems: A review. Applied Sciences, 2, 602-628.
http://dx.doi.org/10.3390/app2030602
[2] Silva, R.M., Martins, H., Nascimento, I., et al. (2012) Optical current sensors for high power systems: A review. Applied Sciences, 2, 602-628.
http://dx.doi.org/10.3390/app2030602
[3] 江毅 (2009) 高级光纤传感技术. 科学出版社, 北京.
[4] 王政平, 刘晓瑜, 黄宗军 (2006) 光学玻璃电流互感器中互易性问题的理论研究. 光子学报, 9, 1333-1336.
[5] 王政平, 康崇, 黄宗军, 等 (2005) 法拉第镜式光学电流互感器原理. 哈尔滨工程大学学报, 3, 398-401.
[6] Zhang, R., Yao, X.S., Liu, T., et al. (2014) The effect of linear birefringence on fiber optic current sensor based on Faraday mirror. SPIE/COS Photonics Asia. International Society for Optics and Photonics, 92741N-92741N.
[7] 赵勇 (2007) 光纤传感原理与应用技术. 清华大学出版社, 北京.
[8] Ulrich, R. and Simon, A. (1979) Polarization optics of twisted single-mode fibers. Applied Optics, 18, 2241-2251.
http://dx.doi.org/10.1364/AO.18.002241
[9] 康崇, 吕文磊, 欧阳鸿, 等 (2008) 光学电流互感器中线性双折射与法拉第效应的分离检测. 光学学报, 1, 163- 168.
[10] Rogers, A.J. (1977) Optical methods for measure-ment of voltage and current on power systems. Optics & Laser Technology, 9, 273-283.
http://dx.doi.org/10.1016/0030-3992(77)90006-8
[11] Kurosawa, K. (2014) Development of fiber-optic current sensing technique and its applications in electric power systems. Photonic Sensors, 4, 12-20.
http://dx.doi.org/10.1007/s13320-013-0138-z
[12] Collet, E. (2003) Polarized light in fiber optics. SPIE Press, New Jersey.
[13] Xu, S., Li, W., Xing, F., et al. (2014) Polarimetric current sensor based on polarization division multiplexing detection. Optics Express, 22, 11985-11994.
http://dx.doi.org/10.1364/OE.22.011985
[14] Po-lynkin, P. and Blake, J. (2005) Polarization evolution in bent spun fiber. Journal of Lightwave Technology, 23, 3815-3815.
http://dx.doi.org/10.1109/JLT.2005.855865
[15] Wang, L., Xu, X., Liu, X., et al. (2011) Modeling and simulation of polarization errors in reflective fiber optic current sensor. Optical Engineering, 50, Article ID: 074402.
http://dx.doi.org/10.1117/1.3602898
[16] Xu, S., Li, W., Xing, F., et al. (2014) Polarimetric current sensor based on polarization division multiplexing detection. Optics Express, 22, 11985-11994.
http://dx.doi.org/10.1364/OE.22.011985