基于时间窗口阈值法的山丹县农作物种植结构变化
Changes in Crop Planting Structure of Shandan County Based on the Time Window Threshold Method
DOI: 10.12677/GSER.2015.44019, PDF, HTML, XML, 下载: 2,559  浏览: 8,592  国家自然科学基金支持
作者: 刘亚群, 何 勇:重庆交通大学建筑与城市规划学院,重庆;宋 伟:中国科学院地理科学与资源研究所,陆地表层格局与模拟院重点实验室,北京
关键词: 时间窗口阈值法农作物种植结构TM/ETM+影像NDVI山丹县Time Window Threshold Method Crops Planting Structure TM/ETM+ Image NDVI Shandan County
摘要: 及时准确地获取区域农作物种植结构信息,对于保障区域农业可持续发展及国家粮食安全都具有重要意义。本文以黑河流域山丹县为研究区,基于TM/ETM+影像,利用时间窗口阈值法对山丹县2007和2012年大麦、小麦、油菜和玉米的空间分布进行遥感识别,并分析其变化。结果表明:1) 山丹县农作物种植结构提取总体精度87.20%,Kappa系数0.84。2) 2007~2012年,山丹县大麦的种植面积和种植比例呈下降趋势,小麦、油菜和玉米的种植面积和种植比例呈增加趋势,其他农作物的种植面积小幅增加但种植比例下降,增加的小麦、油菜和玉米主要由其他农作物转移而来。
Abstract: Timely and accurately obtaining crop planting structure is crucial for guaranteeing the agriculture sustainable development and national food security. Taking Shandan County in the Heihe River Basin as the study area, we adopted a time window threshold method based on TM/ETM+ image to extract the spatial distribution of barley, wheat, rapeseed and corn of Shandan County in 2007 and 2012. The changes in the crop planting structure and the driving forces behind them were also analyzed. The results show that: 1) the overall accuracy of crop planting structure extraction was 87.20%, with Kappa coefficient of 0.84; 2) the planting area and proportion of barley decreased during 2007-2012, while those of wheat, rapeseed and corn increased. The planting area of other crops slightly increased while the planting proportion of it slightly decreased. The increased wheat, rapeseed and corn were mainly converted from other crops.
文章引用:刘亚群, 宋伟, 何勇. 基于时间窗口阈值法的山丹县农作物种植结构变化[J]. 地理科学研究, 2015, 4(4): 171-179. http://dx.doi.org/10.12677/GSER.2015.44019

参考文献

[1] 吴炳方, 范锦龙, 田亦陈, 等. 全国作物种植结构快速调查技术与应用[J]. 遥感学报, 2004(6): 618-627.
[2] 胡琼, 吴文斌, 宋茜, 等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学, 2015, 48(10): 1900-1914.
[3] Zhang, Y., Li, X.B. and Song, W. (2014) Determinants of Cropland Abandonment at the Parcel, Household and Village Levels in Mountain Areas of China: A Multi-Level Analysis. Land Use Policy, 41, 186-192.
http://dx.doi.org/10.1016/j.landusepol.2014.05.011
[4] Song, W., Chen, B.M. and Zhang, Y. (2014) Land-Use Change and Socio-Economic Driving Forces of Rural Settlement in China from 1996 to 2005. Chinese Geographical Science, 24, 511-524.
http://dx.doi.org/10.1007/s11769-013-0633-6
[5] 方红亮, 田庆久. 高光谱遥感在植被监测中的研究综述[J]. 遥感技术与应用, 1998, 13(1): 65-72.
[6] 张苗, 蒋志荣, 马明国, 等. 基于CASI影像的黑河中游种植结构精细分类研究[J]. 遥感技术与应用, 2013, 28(2): 283-289.
[7] 张永庭, 严瑾, 杨雪茹. 高分辨率卫星遥感在引黄灌区农作物种植结构调查中的应用[J]. 农业科学研究, 2012, 33(2): 13-16.
[8] 王利民, 刘佳, 杨玲波, 等. 基于无人机影像的农情遥感监测应用[J]. 农业工程学报, 2013, 29(18): 136-145.
[9] 刘克宝, 刘述彬, 陆忠军, 等. 利用高空间分辨率遥感数据的农作物种植结构提取[J]. 中国农业资源与区划, 2014, 35(1): 21-26.
[10] 杨小唤, 张香平, 江东. 基于MODIS时序NDVI特征值提取多作物播种面积的方法[J]. 资源科学, 2004, 26(6): 17-22.
[11] 张霞, 焦全军, 张兵, 等. 利用MODIS-EVI图像时间序列提取作物种植模式初探[J]. 农业工程学报, 2008(5): 161-165.
[12] Lloyd, D. (1990) A Phenological Classification of Terrestrial Vegetation Cover Using Shortwave Ve-getation Index Imagery. International Journal of Remote Sensing, 11, 2269-2279.
http://dx.doi.org/10.1080/01431169008955174
[13] Verbeiren, S., Eerens, H., Piccard, I., Bauwens, I. and Van Orshoven, J. (2008) Sub-Pixel Classification of SPOT- VEGETATION Time Series for the Assessment of Regional Crop Areas in Belgium. International Journal of Applied Earth Observation and Geoinformation, 10, 486-497.
http://dx.doi.org/10.1016/j.jag.2006.12.003
[14] 蔡学良, 崔远来. 基于异源多时相遥感数据提取灌区作物种植结构[J]. 农业工程学报, 2009(8): 124-130.
[15] 马丽, 顾晓鹤, 徐新刚, 等. 地块数据支持下的玉米种植面积遥感测量方法[J]. 农业工程学报, 2009(8): 147-151.
[16] 郝鹏宇, 牛铮, 王力, 等. 基于历史时序植被指数库的多源数据作物面积自动提取方法[J]. 农业工程学报, 2012(23): 123-131.
[17] 黄青, 唐华俊, 周清波, 等. 东北地区主要作物种植结构遥感提取及长势监测[J]. 农业工程学报, 2010(9): 218-223.
[18] 李正国, 杨鹏, 周清波, 等. 基于时序植被指数的华北地区作物物候期/种植制度的时空格局特征[J]. 生态学报, 2009(11): 6216-6226.
[19] 郝卫平, 梅旭荣, 蔡学良, 等. 基于多时相遥感影像的东北三省作物分布信息提取[J]. 农业工程学报, 2011(1): 201-207.
[20] 顾晓鹤, 潘耀忠, 朱秀芳, 等. MODIS与TM冬小麦种植面积遥感测量一致性研究——小区域实验研究[J]. 遥感学报, 2007(3): 350-358.
[21] 崔方宁, 宋晓宇, 孙宝生, 等. 基于多时相TM影像的冬小麦面积变化监测[J]. 遥感信息, 2012(5): 89-95.
[22] 宋伟. 1998-2007年中国耕地数量及其结构变化研究[J]. 经济地理, 2011(10): 1698-1702.
[23] Song, W. and Pijanowski, B.C. (2014) The Effects of China’s Cultivated Land Balance Program on Potential Land Productivity at a National Scale. Applied Geography, 46, 158-170.
http://dx.doi.org/10.1016/j.apgeog.2013.11.009
[24] Zhong, B., Ma, P., Nie, A.H., Yang, A.X., Yao, Y.J., Lu, W.B., Zhang, H. and Liu, Q.H. (2014) Land Cover Mapping Using Time Series HJ-1/CCD Data. Science China Earth Sciences, 57, 1790-1799.
http://dx.doi.org/10.1007/s11430-014-4877-5
[25] 郭铌. 植被指数及其研究进展[J]. 干旱气象, 2003(4): 71-75.
[26] Congalton, R.G. (1991) A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sensing of Environment, 37, 35-46.
http://dx.doi.org/10.1016/0034-4257(91)90048-B